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ABSTRACT

Analytical solutions of stress for composite material are
obtained by means of mathematical theory of elasticity, assuming
spherical inclusions and uniform displacements of boundaries of
representative elements. These solutions show that the failure
criteria of composite materials are complicated functions of the
elastic moduli of matrix, inclusion and composite, and the volume
ratio of matrix and inclusion. Combining this theory with Griffith’'s
theory gives a new criteria for brittle failure of granular rock,
This theory appears to provide a nearly perfect model for granular
rocks, inasmuch as: a) most assumptions used in other criteria are
eliminated, b) most phenomena in failure of brittle rocks can be
described theoretically, and ¢) it is the most logical so far,

A simple formula that relates the elastic moduli of inclusion
and matrix to the effective moduli of the composite is also derived
as a part of the thesis. Comparison with experimental data indicates
that it approximates the value better than other approximation

formulas,
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CHAPTER I

INTRODUCTION

Rock is a naturally occuring composite material. This composite
nature has been neglected in the engineering field dealing with rock,
mainly because it is not practical to consider and it is virtually
impossible to analyse theoretically. Geological defects in rocks,
like faults, joints, etc,, have more influence on designing an
engineering structure in rock, However, the mechanical and physical
properties of rock are the most important factors in such designs, and
have to be determined before considering the forementioned geologic
defects,

The mechanical and physical properties of rock are usually
determined in a laboratory with small specimens cut from drill cores,
Despite the extreme precautions taken in making and handling specimens,
and carefully followed "standardized" techniques and methods in testing,
the test results have shown a vast descrepancy in the properties of
intact rock., This large variance has been accepted as one of the
natures of rock, and statistics were heavily relied on to determine
the proper values,

Recently, as the knowledge of rock mechanics has advanced, some
analytical study on the basic properties of rock has been made for the
better understanding of the behavior of rock under loads, But the main
attention has been focused on the effect of "micro" cracks in an
attempt to utilize Griffith's crack theory in formulating a failure

criteria for brittle material like rock,



In this investigation, rock is treated as a two-element composite
material, The three~dimensional theory of elasticity is used in an
attempt to develop a rational basis for the study of basic properties
of rock for which the inclusions can be assumed to be in a spherical

shape.

A. Purpose and scope of the thesis, Since most rocks (not

minerals) are composite in nature, it is essential to treat them as
composite materials, With the exception of a few sedimentary and
metamorphic origins, the inclusions are generally granular shaped,

The “granular rock" here is intended to refer to composite material in
which the inclusion is of granular shape and the matrix and inclusion
are both elastic and brittle, i.e., rock,

The basic purpose of this thesis is two-fold: 1) to determine the
strength variation of granular rock due to matrix-~inclusion ratio and
void ratio, and the basic strength of matrix and inclusion, and 2) to
find a suitable expression to relate the elastic properties of
granular rock to the elastic properties of matrix and inclusion(s).
The results will enhance the understanding and knowledge of the
physical and mechanical behavior of rock that is very different than

other engineering materials.

B. Approach used in the investigation. The over-all properties

of granular rock are considered to be guasi~homogeneous and quasi-
isotropic., This assumes that the inclusions are "perfectly-disorderly"
distributed homogeneously (1) throughout the matrix. Thus, a unit

element containing one inclusion represents the material with respect



to the over<all elastic rroperties and the volume ratio of inclusion
to matrix, The materials composing the matrix and inclusions are
assumed to be isotropic, homogeneous and linearly elastic,

For the sake of theoretical analysis, the inclusions are assumed
to be spherical, Chapter II is concerned with the stress analysis of
an element with boundary conditions derived from reasonable
assumptions, Chapter IV is concerned with determination of effective
elastic moduli, These theories are compared with other existing

theories and data available in Chapters III and IV,

C. Literature review. In general, a homogeneous material with

cracks or voids can be classified as a special kind of composite, the
rigidity of the inclusion (void, crack) being considered to be zero.
The attempt to find relations between the elastic properties and the
strength of elastic solids and the effect of composite nature on the
strength is not new, The main purpose of such investigations in the
field of earth sciences is to understand the failure mechanism and
deformational behavior, and in the other sciences it is to obtain
stronger and stiffer engineering materials,

Price (2, 3) attempted to derive a relationship between quartz
content and the strength of sandstone and siltstone, His results show
that the strength of rock increases as the quartz content increases,

Judd and Huber (4) and D'Andrea et al (5) observed a curvi-
linear relationship between compressive strength and the density of
rocks,

Willard and McWilliams (6, 7) studied transgranular-intergranular

fracture of granular rocks., They measured the distance increments of



a fracture trace within grains and along grain boundaries in a thin-
sectioned disc of charcoal gray granite, They concluded that
transgranular defects are the predominant factor influencing the
fracture of charcoal gray granite at low rates of loading.

Brady (8, 9, 10) studied the brittle fracture of rock in relation
to the density of microcracks in the rock, assuming a uniform stress
distribution throughout the material., He concluded that total
failure takes place when the total microcrack density reaches a
critical value., He also showed that the Griffith theory is not
useful to the macroscopic fallure of brittle material.

Morgenstern and Phukan (11, 12) experimentally determined the
relationships between the strength and porosity and the porosity and
relative compressibility of Bunter sandstone. They found that the
porosity increases compressibility and decreases the strength almost
linearly.

Ishai and Cohen (13) made an experimental study of yield strength
of epoxy composites and investigated the effect of filler and cavity
content on the yield strength,

Walsh and Brace (13, 14, 15, 16) investigated the effect of
various shapes of cracks on the compressibility of rock and the
effects of grain size on the fracture of rock, both theoretically
and experimentally,

Huang (17) used Weibul's theory to determine the relationship of
porosity to strength and to the elastic modulus of aluminum specimens,
Bortz and Nagao (18) found a good linear relationship between

flexural strength and bulk density of commercial tar-bonded basic

brick,



Brown and Mostaghel (19), Coble and Kingery (20), Hall (21), and
others are concerned with reinforcing engineering materials with
inclusions that are stronger than the matrix,

The amount of theoretical work has been far less than that of
experimental work, Goodier (22) appears to be the first to derive
solutions for spherical and cylindrical inclusions in infinite media,
Edwards (23) obtained solutions for spheroidal inclusions and cavities,
Eshelby (24) for ellipsoidal inclusions, Sternberg and Sadowsky (25)
for two spherical cavities, and Wilson and Gorie (26) for an imbedded
spherical inclusion in an infinite elastic solid, These theories have
been applied to composite materials (27); however, they are not
applicable to composites where the distance between inclusions are
smaller than about three times their diameter,

More extensive work has been carried out by many investigators on
the study of the physical rather than the aforementioned mechanical
properties of composite materials in relation to the properties of
matrix and inclusions. Einstein (28) is apparently the first (29) to
attempt such work, He studied effective viscosity of a viscous fluid
containing rigid spherical inclusions, Later, various combinations
of rigid, viscous or elastic matrix, and viscous, rigid, elastic,
plastic or void inclusions were studied by Taylor (30), Froehlich and
Sack (31), MacKenzie (32), and Oldroyd (33). Eshelby (24) seems to be
the first to use the model in which the inclusion and matrix are both
elastic materials,

In all the studies mentioned here, the distance between two
adjacent inclusions is assumed to be very large compared to the size

of spherical inclusions, so that the interaction between inclusions



can be neglected, Thus the theories are wvalid only when the inclusion
to the matrix volume ratio is very small (about 3 per cent or less).

Smallwood (%), Guth (35), Mooney (36), Kerner (37), and Sato
and Furukawa (38) modified Einstein's equation to use viscous composite
of higher ratio of inclusion to matrix,

Only recently (1960) has attention been turned to elastic
heterogeneous (high inclusion to matrix ratio) material, Paul (39)
was the first (29, 40) to obtain the bounds for the elastic moduli of
heterogeneous solids, The upper and lower bounds were obtained by
using the minimum potential energy theorem and the theorem of least
work, respectively, of the theory of elasticity. Although these bounds
are theoretically exact, they are too far apart to provide a good
estimate of the effective Young's modulus,

Hashin (41) obtained approximate bounds for two or more phase
heterogeneous solids with spherical inclusions using the variational
theorems, He assumed that the individual matrix part surrounding an
inclusion is also a sphere concentric with the inclusion, Later
Hashin and Shtrikman (42) derived similar expressions without making
assumptions about phase geometry, but the bounds were still too wide
in most cases to be practical,

The use of a single experimentally determined parameter, which
is probably dependent on the ratio of Young's moduli of matrix and
inclusion of two-~-phase solids, has been proposed by Wu (43), While
this expression gives values of effective Young's modulus for any
composite, the parameter itself must be determined by experiments,

Approximate formulas for determining the overall elastic moduli

of a multi-phase material composed of contiguous inclusions were



obtained by Budiansky (44), assuming that the grains of each phase
are 'more or less" spherical., His explicit formula for spherical
inclusions shows that the modulus of matrix reaches that of inclusions
when the volume ratio exceeds 50 per cent,

Greszczuk used assumptions similar to Paul's in an attempt to
obtain an approximate expression for the average elastic moduli for
elastic inclusion and bounds for the rigid inclusion of composite

solids from an engineering viewpoint,



CHAPTER II

ANALYSIS OF STRESS

In this chapter, the theoretical solutions for the stresses in a
unit element are obtained on the basis of the mathematical theory of
elasticity., We assume: a) that the substancqs are homogeneous,
isotropic and linearly elastic, b) infinitesimal strain, c) absence of
body forces in the medium, and d) uniform temperature distribution,

The basic differential equations governing behavior of such
elastic solids are known to be:

a) equation of equilibrium

054,5 =0 (1)

b) strain-displacement relations

€:j =3(u;,; +uj,1) (2)

¢) stress-strain relations

05 =-1-E—})(€;j+'i'_£2—y€w&j) (3)
d) compatibility equations
€1kt * €ut,ij= Eap,jut €51, 4k ()
The solutions of an elasticity problem must satisfy equations (1)
through (4) and the boundary conditions. In general, there are four
types of boundary conditions that are given to a problem, i.e.: a) the
distribution of forces on the surface is prescribed, b) the distributin
of displacements on the surface is prescribed, c) forces are prescribed
over a portion of the boundary and surface, and d) components of

surface forces and components of surface displacements are prescribed



over the boundary,
Depending on the type of problem, boundary conditions, and number
of dimensions considered, it is sometimes convenient to solve a
problem when the governing equations are set entirely in terms of
stresses or entirely in terms of displacements, In particular, if the
displacement method is used, the stresses are uniquely defined by the
stress-strain and strain-displacement relations so that the
compatibility equations need not be used.
Substituting u; into equation (1), we have
(A+/u) LIRT YIS 0
or
u; i+ (1-20) uj,ii= 0 (5)
The problem is now reduced to solving equation (5) with given

boundary conditions,

A, Assumptions and boundary conditions, First, we assume that

the representive unit element is a cube containing a spherical
inclusion, and that the mass lies in a uniform uniaxial load field, In
order to analyse stress conditions in this element some simplification
of the geometry of the element and the assumptions are needed,

When the heterogeneous material undergoes changes in geometry due
to external load, the individual element also changes its shape., We
visualize a cubic element whose sides are either perpendicular or
parallel to the direction of the load (or, we can cut an element in
such a way that the sides will be parallel or perpendicular to the

direction). We assume that the boundaries of the cubic element
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remain straight after the deformation takes place. Thus, if the load
is uniform and uni-directional, the boundaries of the element will
undergo constant displacements, This assumption is theoretically
correct if the inclusions are distributed in cubical arrangement, It
is also reasonably valid for composites with homogeneously distributed
inclusions (45),

It is evident that the problem becomes much easier if we replace
the outer boundaries with spherical ones. To find an exact boundary
condition of the spherical surface that is replaceable with the
constant displacement of the straight plane is impossible without
knowing exact displacement functions between straight boundary and
the inclusion., However, as will be shown later, it is reasonable to
assume that the displacement of spherical boundary is the same as that
in a homogeneous material with the effective elastic moduli. That is,
when the upper boundary of a cube deforms uniformly by w,, the

displacements of spherical plane of radius d within the cube are:

u, = —"2&[(1-y)+(1+u)cos 26]
(6)

u, =- %%(1+y)sin26

Thus, the problem is reduced to solving a composite sphere with
given boundary conditions equivalent to constant displacements. Other
boundary conditions are that the displacements and the stresses across
the boundary of the inclusion are the same for the inclusion and
matrix, i. e.,

(u;)y=(u;),

at r=a (7)
(ovr s Oved =( Gyre 079)2
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Figure 2-1, Replacement of boundary and coordinate system
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B, Mathematical preliminary. The problem has been formulated in

such a way that it can be solved in terms of series involving

spherical harmonic functions with two variables. In this analysis,

two types of solutions are used., They are, following Love's notation

(66), type w and type ¢ solutions. The W type solution is given by
;= 1 G +%m X W (8)

where (W),1is a homogeneous solid harmonic of degree n, This satisfies

the equation (5) provided that

-2 3n+1-2(2n+l1 )Y
n- 54 Y

The dilatation is
A = [2n+(3n)] wa

The type solution is
u: = (9)

L n g i
where ¢ 1is any spherical solid harmonic of degree n. The dilatation
vanishes for this solution,

Since the problem is axisymmetric, the solution is independent of
angle % and we may use spherical coordinates with r and 6 only.

Changing the cartesian coordinates used in equations (8) and (9) into

spherical coordinates, we have,

u, = r’gg‘)—"-t-o(,,ro._),,

v ar
(10)
Ug =T 35(‘;'3'

for (L type solutions, and
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o 22

(11)
w= 1238
8~ r 28

for & type solutions.

The formulas for the strains are:

€= Suy
rr ar

r 36 r
(12)
Eyy— A~€x=€pp = ¥r 4 Ve cot ©
r r
= _1_-_ 811r 3 (e . —
=¥6T ¥ Je ar( =) Cop= €yr=0
The general formulas for the stress-strain relations are:
Oypu= 20 |- A+ (€,71€00+€Ex9)
Orr» Oogr Oyy= <M 1753 rr*€opr€yy
(13)

Ove = M€Eyg » Ggy= Cyr=0
Since the dilatation A vanishes for the ¢ type solutions, the
stresses can be simply related to ¢ functions directly. By combining

(11) an4 (12) and substituting results in equation (13), we have:

= 228
Orr = zﬂar‘
_ 1 '8, 13¢
Tgg = 2M( ;’?§+ r ar )
(14)
Gw-* - (o.rr +0—ee)
O;a:%‘“a% rsg = 0;,,.= 0

C. Mathematical form of solutions, The problem essentially is

solving a Laplace equation in spherical form, When the solutions are

independent of %, the general solution of this equation is known
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to be (46)

W@ =Zr“ Pn(cos@) + Zr’c"“)P,,(cose) (15)

n=o

where. P, (cos 8) is the Legendre polynomial of nth degree in terms of

cos p. The terms Pn(cos @) are also called "zonal" harmonics, because

the curves on the surface of a unit sphere along which such functions

vanish are parallel to the equator of the surface, thus dividing the

surface into zones, For a clear understanding of further development

of stress solutions, a few zonal harmonics are set forth explicitly:
P, =1 P, = cos o

3(5 cos®>® - 3 cos 8)

P, = 4(3 cos*9 - 1) P

Solutions in terms of harmonics of positive degrees are used in
problems relating to a body of finite size, and those of negative
degrees in problems relating to a body with a small spherical cavity
at the origin, We note that both sets of solutions are applicable to
the matrix region. Since the problem is symmetric about z-axis and
about the equator plane, it is easily seen that odd-numbered solutions
may not be usable due to the term cos 20 in boundary conditions., With
these facts considered, we choose following sets of equations:

a) ¢z and «),to account for the constant stress parts in region

1 (matrix) and region 2 (inclusion); W, for hydrostatic stresses

and ¢, for non-hydrostatie stress parts;

b) ¢, to satisfy the boundary conditions for region 2 and outer

boundary conditions of region 1;

c) (., to take care of the inner boundary of region 1;

d) @_, and @ to meet the effect of the singularity in region 1;

;é . for purely radial and pf_ 3 for pure shear part of stresses;

where subscripts of < and 525 refer to the power of r,
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Multiplying each function with an arbitrary constant and
superposing the resulting displacements and stresses, we find the

following set of equations (16) for region 1:

_-1 r 2 A )}( 1
uy‘;?A‘—E%;B!"’EC‘-—;{:rDi +25\—5F1 + 05 pe Gy

+(-E§"'B‘ +ng1 +%—gir3F, + i‘:riz Gy )cos 28

Uy

fl

-g(;};Bg*’er + r*F, +;17Gt ) sin 286

4 6 4
il 75 A+ gF B+ O =

%
+ (85 +30c -2 rer, - 325 LG, ) cos 26

Crr

i

2 6 TN 152/
O.ée =/“ [" ‘-"'r; A" - u 3 Bg + C; - }\zs Di - —5;;1- I‘ZFJ + 512"3' G1
+ ( - By - 3C; - 2lhoap , 3_g ) cos 29]
2r5 t SN ! 2r3 3

2 4>\4 'Xl 1

,,_(_,__5.]3 %r’F,-&--é-g;G,)coszej

2rs
0;e=/ui(;1‘-25-B1-301-l;-;—7-r‘F }-—5 G, )811‘126
and for region 2, equations (17):

u,

]

?.Az-.%.g.!r32+21r3cz+(erz+2—Jér302 ) cos 28
2 2 63 2 63

u9=-g(rA2+racz)sin26

46 Jz 2 J
6:'=/a2[A1--§iB '%T:'rcz“" ( %z'%frzcz ) cos 29]

2

6'99=/¢‘1[Az-%8 —i——r‘C - ( 34. + 21G9'° *C, ) cos 2 4

0'1,*= /uz[ -ZAZ - l‘iégf B - zé%l_l rzCz - % rzCz cos 26]
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Oro= - 3/(,(2( A, +g-a’-rzcz ) sin 28

where,

Aq =
Ao=
A“ =

If the deformed cube was composed entirely of material 1 and

1 -2y 8, =1-2,
=5=~4p 8, =5 - b,

7 - 4L 8;=7 - b,
1+, =1+ 2,

5 =2 8;= 5 =2,

7 + 11, 6,=7+ 112,
7+ 22, B, =7 + 22,

7+ 5 8s=7+ 52,

7 - 10 2, Bo= 7 - 102,
2 -y, 8,= 2 =2,

7 + 2 Bu= 7 + 2,

elastic and homogeneous, the displacements and stresses on a spherical

surface of

radius a would be,

u,:%[(1-d,)+(1+y.)cosze]
ue:-%a%(1+u,)cos29

= Eiwo 18
Cyr = 2d(1+c0526) (18)

G, = - 2% 535 20

2d

Ggo= Oyyp= 0

The condition of uniform displacement, equation (18), is

superposed

conditions

to the equation (16) for region 1. Using boundary

(6) and (7), we obtain a set of nine equations from which
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the constants are determined. The three constants A,, D;, and Bi are

obtained independently from others.

A, = WoQ)\L+>\|)(A|9+£z -Mé.ﬂ.)a?d?’
t 3[( 64/‘(2‘*291/01 )Ac dz’()\.94/u1 ‘)\49./438.3]

B, = We2a [1 _ A2 A6+ A1) (Ba Ja+26 411 )3
e [d (osit;=29, . )X d* = (X Balty =14 O M, )a?]

Cr = ¥e82d (At A )[MiOai=248y = N\ (Oap+2 0,0 )d]
t 66, [(e‘;/uz+29./u. )x,df-(x.e*/uz-k.*év“.)a']

The remaining six constants may be obtained by solving the six
simultaneous equations.

B, = Up/Lo
where,

Up = &d'w, [{a‘ d* (@ Xy = 2385 65 (4,= 01, )8%) (2 A Xy Xa+305X2X3 )-323 8504
*(pram ) (Q% Xy = 6;8° X2 )Xo Qrgd” d° (220 X, Xg#3 85X X3)= A sAa 05 00 (e = 1)
(3M+2 A0 )X3)=(a*d(2A: X, X443 65Xz X3 )= X303 8a( a4 ) (3234221 A )iz
a® (220 X1 Xa+3 6% X3 JQd’ Xy =A32a 8365 (pta= 141)8D =3 A3 D B Oglit, = i1 )
a*X,-0,a° X, )xa}]

Lo = [{ a" (52, 43)(2 0 X, Xa4363:X2X3)= (32422, 2q )} {2 K +323 050 Y-
4 u,)+15 Gy'”)} X,} {a‘fdz (22 X1 K443 05X2X2) A% Ky = X3 858, pa= 41 )a?)-
3% 05 Baliem M) (d5 X, =0,a% X, )Xa} -3d"(a? A(2 1 X X4+3 83X X3 )= 23 05 By

Ma=pt, ) (3,42, M)x,),gi’(zx.x.x4+3e,xzxa){a‘X.—>\363<6¢,(,u,+ D

156‘%) d‘} - A,(d‘ X, -0,a° xz){5 AXi+32s 63<eq(/u,-4/u. H15 &ﬂ.))(;}]



Fy=| A3 0364Xs(impi)a®
A [ s 8384Xs (- pz)a (wou+3d01)-X3d{5A,X\+37\383<6Q(}1;J+/ul)+155'2ﬂ2> }Bi]/ 7 A2 K et 305% Xs)

Gl: [A3 esgqas (jl‘ 'ﬂz)(woAA'BCid)‘B 93d(a7 xz F( +7\3st1 )] / BX; a%d

L= Yeds . Oy UstlOsu, A3Brls=2; 0
oA 6,~63 /UzasBi * Gt %éffess)\;ﬁ

Cp= Wede , B Gy Gi _ A
2 3a,d+a,+az+F‘L+-£{;--;‘%

where,

Xy = 030{(Apa=dep) = 96,6, U,
Xy = 602 Aqliz+ Ba (Agphy =Aq /)

X3 = 63/"2+ 4 GQ/uI
Xy = ?\QQQ/“‘:‘APQQ/‘I
X5 = GQ(ﬂz—u/ul) + 15 G-Z/Uz

A|z= 0 - G-l

ang +

NiBrh = Aa O3 fhs

A (6,-0 Ju, 2>

1
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The calculation of constants, thus the stresses, is virtually
impossible to do by hand, Therefore it is necessary to use a digital
computer., The variations of constants with « (= a/d), A (= E./Et), and
Y' (= 2;/2, ) are shown in Figures 2 through 6, for particular cases.

It is seen that all constants, except A, and B:;, converge to zero as

(3 becomes zero or « approaches one, This means that when o and 3
become such values, i.e,, when the element is homogeneous, the stresses
are constant and the displacements are in linear relationship with the
radial distance. Computation by digital computer proved that the
boundary conditions are also satisfied, This assures that the fore-
going solut.ioné are correct, It is interesting to note that the values

change almost linearly with respect to 07 (Figures 5 and 6).

D. Discussion on boundary conditions. In obtaining the

theoretical solutions, it was assumed that the outer boundary of the
spherical composite element will displace-as if it were of a
homogeneous material that has the properties of aver-all composite
(equation (6)). Clearly, this is true when ¥’= 1, in view of the fact
that the 2/ is the only factor governing the boundary equations, For
# 1, however, it is not known if the assumption is correct.

As will be discussed later (Chapter IV) in detail, the value of
effective Poisson's ratio lies between values of 2, and ;. The
rigorous analysis does not give exact values of 2/ but only bounds of
2 , which lie in the range between ., and .. -

Using the average value of these bounds for J may be practical

when the gap between the bounds is narrow, but it may be very
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incorrect when the gap is wide. It is conceivable, however, that /)
will have more effect than J, in actual displacement, as the boundary
lies within material 1, It was found through comparison with finite
element solutions that the effective ./ prescribes the actual boundary
conditions very closely (Appendix B). The solutions describe the
conditions for porous rock when /3 approaches zero.

The comparisons of stresses with finite element solutions for
& = 5/8, with different £ and s are shown in Appendix A, All
theoretical values seem to agree very well with those of finite
element solutions, although the boundary conditions are somewhat
different, It should be remembered that the finite element solutions
are very rough approximations because of the small number of elements

used in analysis, especially along the boundary (45).

E. Results of stress solutions. As expected, stress

concentrations exist along the boundaries of inclusions, This affirms
the common belief that the grain boundaries in rock are planes of
weakness, Figures 7 through 10 show some results from the stress
solutions for matrix region, The largest maximum principal stresses
(max. 67 ) shown, tension being positive, are that occur at the grain
boundaries due to the effective unit stress 6,. Figure 10 shows the
ratio of the maximum compressive stress (6:) on the grain boundary
to the maximum tensile stress (6;) also on the grain boundary,

wWhether the material breaks by maximum stress, maximum shear
stress, or maximum extension stress, may depend on the type of material.
But it is clear that such failure will always be initiated at the grain

boundaries., The three principal stresses, maximum stress difference,
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and induced stresses in principal directions for several different
values of «, B, and Y are listed in Appendix B,

The solutions also indicate that the principal stresses at points
Just inside and just outside the grain boundaries are different., This
may explain why the grains break in some rocks under load even when
the load is not sufficiently great to cause the failure in matrix

region,
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CHAPTER III

FAILURE CRITERIA OF GRANULAR ROCK

There are many theories describing the conditions of failure of
materials under mechanical load. For example, Jaeger (5%), lists
eight such theories, Most of these theories were developed for
ductile materials such as metals and plastics, It should be pointed
out that a failure criterion does not necessarily describe the actual
failure mechanism, but that it only describes the condition under
which failure may take place most of the time.

Among the proposed theorises, only Coulomb-Navier and Mohr's
theories have been found to be "reasonably wvalid" for rock on the
basis of experimental studies (47). The Griffith's theory of brittle
failure has become quite popular in the rock mechanics field in recent
years, The main reason for this is that it is the first theory that
provides a model for brittle material., The theory was developed for
glass, based on the stress concentration around a micro crack, and has
been proven to be valid for isotropic materials such as glass (48).
Since all rocks have cracks (16, 49) to varying degrees, the Griffith
theory should be applicable to rocks., However, direct application of
this theory to rock has not been very successful (16, 49). A more
obvious defect (51) of the theory is that it indicates that the ratio
of uniaxial compressive strength to tensile strength is exactly eight,
whereas it is well known that the ratio sometimes exceeds 100 in rocks.
Otherwise, it gives a semiquantitative description of many common

rhenomena of rock (49)., Hence, many attempts were made to remove



this "defect"” through modifications, but it may be that the defect was
in the application, not in the original theory.

MeClintock and Walsh (52) hypothesized that the cracks close up
under pressure, developing friction on the friction surfaces, and Paul
and Gangal (51) developed an idea of fracture hardening, However,
experimental studies show that the coefficient of friction at the
crack surface has to be very high (up to twice of actual value) in
order that the compressive strengths exceed ten times the tensile
strength (53). The hardening of fracture is very doubtful in brittle
materials, especially at a relatively low pressure of uniaxial
compression,

Again we must remember that the original Griffith theory was
developed for glass, a homogeneous and isotropic material. Despite
the fundamental fact that most rocks are notably inhomogeneous, all
aforementioned theory neglected this property of rock. In fact, no
study of effect of inhomogeneity under stress conditions is known to
have been made to date (49).

The solutions from previous chapters provide a failure criteria
for composites of ideally isotropic materials, i.,e., for heterogeneous
material without micro cracks. If we combine the Griffith theory and
the effect of heterogeneity, it will describe the failure of granular
rock better than any single existing theory.

It is proposed here that the Griffith characteristics be taken as
intrinsic properties of each individual material composing the
inclusion and matrix, and that the new failure criterion based on the
effect of heterogeneity be used for rocks, especially for granular

rocks, This new criterion is extremely difficult to put into a
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mathematical form. However, the concept is quite simple and may be
expressed as
0= 0 (6, Evy 2y St &y g &4 d, G(r))
where S, is the strength of the matrix, d is the strength ratio
between the inclusion and matrix, and G(r) is the stress change due
to Griffith cracks,
This criteria gives explanations to many questions heretofore
unanswered,
a) The ratio of compressive and tensile strength of rock depends
on the properties and their ratios of individual minerals
composing the rock, For instance, the ratio may be exactly eight
for individual minerals, but because of the heterogeneity, for
rock with = 3, =2, and = .75, the stress ratio is about 5,
which raises the strength ratio of the particular rock to 40,
Thus the strength ratio of uniaxial loadings is theoretically
explained.
b) The frequent failures along the grain boundaries have lead to
the assumption that the micro cracks concentrate along such
boundaries, According to the new criterion, high stress
concentrations along the boundary, given by the stress solutions,
are really responsible for such breakages.
c) This theory is capable of predicting whether the type of
failure of a particular rock will be intergranular or intra-
granular, The principal stresses (maximum), 6, , are different
for inside and outside the grain boundary. Therefore, when

the strength ratio is exceeded by the ratio of stress



(01 )inside/ (01 )outside, the failure will be transgranular, and vice
versa,

It is well~known fact that rock is weaker when wet. Jaeger (54)
suggested the use of effective stress for saturated rocks, i.e., to
use 0 - P instead of 6, where P is pore water pressure, But the
experimental results did not confirm this very well, especially for
rocks with small porosities (49). The stress solutions indicate that
the stress concentration factors are very high when the inclusion is
liquid. The stresses for water inclusions are obtained by setting
V; = .5 and E, = 300,000 psi (55). For example, for B= .10, J = .1,
and X = ,95, the maximum concentration factor is about 23.0, whereas
it is about 8.5 when ﬁ::.OOI. which approximates dry porous material.
Thus the proposed theory also gives the most logical explanation to
failure of saturated rocks. These numbers are based on the assumption
that the pore water is completely confined within each pore. Although
a direct application may not be possible because of seepage of water
in real rock, the theoretical values can be inferred to such problems.

One disadvantage in using this theory is the complexity of the
expressions, Despite this, the theory provides a near perfect model
for brittle, granular rocks in view of the facts that: a) it
eliminates most assumptions used in other theories, b) it makes it
possible to explain most phenomena that were not possible with other
theories, and c) it is the most logical from the mathematical point
of view,

A direct application here may not be feasible as in the case with

the Griffith theory, because the theory gives only the conditions for
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“initial" failures, Some cracks due to initial failure may not lead to
a complete failure, depending on the properties of the material,

Figure 1 shows the variation of the strength of porous rock with
respect to its porosity for ;= .3. The ratios of compressive
strengths to that at zero porosity are reciprocals of the ratio of
maximum tensile stress to that for ¢{ = .15, assuming herse that the
compressive failure is caused by these tensile stresses, When a dry
porous rock is compressed (extended), the maximum compressive (tensile)
stress occurs outside the outer spherical boundary, because the
vertical stiffness is higher near the edges of the elemental cube.
Thus the absolute maximum stresses for void inclusions cannot be found
with the theoretical solutions. The ordinate on the tensile strength
curve is the ratio of maximum tensile stress at § = 90 degrees to that
occuring anywhere in the matrix, when the element is in tension,

Figure 2 shows the theoretical compressive to tensile strength
ratio with respect to porosity. This was obtained by multiplying
eight (from Griffith theory) to the ratio of maximum tensile stress
developed in compression to the apparent stress, The apparent stress,
G, was calculated by multiplying effective (apparent) strain and
effective Young's modulus, i,e., 0 = E wo/d. Porosity () can be
calculated from 7 -~ relation 7= /6.

Figure 3 shows the results from the Brazilian test (indirect
tensile test) on pressure-sintered N;0, taken from reference 75. In
plotting the experimental values, the original strength (i.,e., tensile
strength when 7 = 0) was assumed to be 22,000 psi.

Results of the unconfined (uniaxial) compression test with Bunter

sandstone are shown in Figure 4, with the theoretical curve for
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compression., The data was obtained from reference 45, The zero
porosity strength in this case was assumed to be 14,300 psi.

A series of tests were made with artificial porous rocks made of
plaster, The descriptions and results of the tests are in Appendix D,
The results are compared with theoretical curves in Figures 2, 5, 6,
and 7.

All the comparisons made above indicate that the theory agrees
with the experiments very well. By superposition of the solutions,
the theory may be extended to theee dimensional problems, For this
matter, an extensive experimental study is required,

The case with solid inclusions shows some interesting results
(see Appendix B). The tensile stress developed in matrix, when the
composite is in compression, decreases as « increases., This indicates
that, if the material breaks in tension rather than shear, the
compressive strength increases with inclusion density, assuming that
the inclusions are much stronger than the matrix, The tensile
strength, on the other hand, decreases with increasing inclusion
density. Thus "reinforcement" of material by adding stronger
inclusions to it may apply only to compressive strength,

The increase in strength with inclusions has been shown in many
experimental studies with metals (Reference 56, for example). No such
studies have been made with brittle materials. Tests with artificial
rocks, such as concrete, show that the strength decreases with increasing
density of the inclusions (59). In order to compare such tests with
the theory, not only the physical properties of individual constituents

but also the porosity of matrix must be known (assuming no porosity for
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inclusions), For example, 10 per cent porosity of concrete is
equivalent to about 50 per cent porosity of matrix when the inclusion-
to-matrix volume ratio is about eight., The strength of the matrix
should be reduced accordingly, in calculating the theoretical strength

of the composite,
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CHAPTER IV

ELASTIC MODULI OF COMPOSITE

In the stress solutions obtained in Chapter II, we used elastic
moduli of matrix E4, of inclusion E;, and of composite material E.
We shall now look into the relations between these moduli in order to
complete the investigation,

As mentioned in the literature review, very extensive
investigations have been made on this subject, The most recent
studies on this can be found in references 60 and 61. Simple and
practical solutions have been proposed by a few authors, Two of
these solutions together with the theoretical bounds for a two-phase
composite are reviewed and a new approach to this problem is
introduced. These are then compared with the data available in
the literature and those obtained from a series of tests with

artificial rocks.

A, Theoretical bounds. The lower bound is obtained by using

the principle of least work in the theory of elasticity. This
principle implies that if the tractions are completely prescribed
over the surface of a body, the actual strain energy generated in the

body is not greater than the strain energy calculated from the state

of stress, i.e.,

1 5.0 vel |904%5
g %% V 2JE(_‘751. av
Y
where E(G}j) is a function relating g;; to q;. If we assume that the

stress in the composite element is uniform and unidirectional,



Ie

116;04 _1 dv av
ZJEO'})- ‘N‘zq;qj[ E;"‘sz]
v V| 2
=l5.6.( L 11
=53 050( g+, )V
therefore,
ExXE,_= 1 (1)
L7 /B +(1-f)/Es

where f is the volume ratio of matrix, Equation (1) is the same as the
formula first used by Reuss (1929) in obtaining apparent moduli of
heterogeneous aggregates (61),

The upper bound is found when the material lies in a uniform
strain field, The theorem of minimum potential energy states that
when the displacement components are completely specified on the
surface of a body, the strain energy generated within the body due to
the deformation does not exceed that calculated from the state of
strain, Hence,

ASTIARS IS SRR
If the strain is uniform throughout the material (12),

Ev =1c . 1-y=bym+2m?

2 é‘j E_;)-V T2 6"5 e“]}VE ( 1—y=2,% ) dv
=1 €..€:--V [ii-J/t =42, m+2m* )fEs
2 Y9 Y (1-p-277)

+ (1-4}:—414m+2m1){1_f) Ez]

C(1-p=220F)
The value of m that minimizes the right hand side is found to be,

m = D(14+2,)(1~224 )EE + 2 (1+ ) (1=22) (1~f )Ea (2)
T (T, )(1-2 2 )fE + (14, ) (1-2 1, ) (1-1)E,

This gives the lowest upper bound of modulus Eg,

E, = {1=# s mt2m?® )E,

(1= ~4ime2m’ ) o
= o) (=2) T (1-f) E, (3)

71"% )( 1-20, )

+

When 2 =2),, E, becomes
Ey=fE; + (1 - f ) E. &)
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which is the formula derived by Voigt in 1910 (61),

The elastic moduli of a composite with cylindrical inclusions
with uniform cross section is equal to Euy when the load is applied in
the direction normal to the cross section and is equal to E. when the
load is applied parallel to the cross section. Kumazawa (61) observed,
however, that under high-pressure static compression, the behavior

of rock is better simulated by E. rather than E,,

B. Paul's approximatioh formula, Paul (1960) used a unit cube

containing one inclusion as a representative element (Figure 1).
Assuming that the cross section originally normal to the axis of
applied force remain normal, and that the strain €; is uniform over
such a cross section, the total force on the section can be expressed
as

F=E€A +E€4;, = €(E, + (E.~Et) A;)

The total deformation J of the cube is

1 ! dx
d = /o €, (x)dx = FL E;+(BEz~E1)A,

but since E = F/{4 ,

1 ‘ dx
E - ‘L E\+(E;-E( )A2(x) )

where the function A,(x) is dependent on the shape of the inclusion,
For a cubic shape inelusion, equation (5) yields;

By +(EE,; ) (1-£ )73 (6)
Ei+(E;-E1)(1-£)¥2{1-(1-1) V3]

E -
B
The assumption of sectionally uniform strain is actually closer to

the assumption of non-uniform strain than that of uniform strain in

z-direction, The assumption used in this formula is, in reality, a
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rough approximation of uniform stress in the media. Thus, in most

cases, the formula is merely an improvement of the upper bound,

C. Greszczuk's expression, Assuming the unit element to be as

shown in Figure 2, and the strain to be uniform in z-direction, the
effective or apparent Poisson's ratio becomes,
Y = f + J,(1-F) (7)

The volume change of an elastic solid in hydrostatic stress field is

AV = -1—;—?'2—1-} o (8)
but

AV = AVy + AV (9)
where

avy = 22 ¢ gy, (10)

Combining equations (7) through (10) and solving for E, we obtain:

Ez{1-21:(1-£)=2 41 } (11)
£(1-2 2, )E,+(1~f)(1-2V;)

The effective shear modulus is determined by using effective E and

E .
Es

2, i,e.,
- B (11a)
/u 2(1+)

The unit element indicates the model to be of an anisotropic
nature, the inclusion density in z-direction being greater than that
in lateral direction., Hence this equation gives somewhat higher values
of E than actual E when the concentration of the inclusion is small,

and it gives the lower values when concentration is high.
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It should be also noted that because the formula has been derived
from /- AV relation, the effective Young's modulus is highly sensitive
to the ratio of J,/J,. As will be shown later, this formula gives
good fit th experimental data only when )./y, is very small or very
large, Since the Poisson's ratio of most rock constituent minerals
are fairly constant within the range of .2 to .3 (62), this formula

may not be the best to use for rocks,

D. A new approach. Since the theoretical work on the subject of

this chapter has been carried out to almost beyond any more improvement,
our prime objective remains to find a formula for effective elastic
moduli of composite material, The derivation of this formula should

be based on theoretically reasonable assumptions, and such formula
should, a) be simple and practical to use, and b) fit experimental data
better for a wider range of property variation than other formulas,

In order to simulate a quasi-isotropic condition, we shall use a
unit element similar to Paul's (Figure 3). As in the case of stress
problem, we will assume that the boundaries of elements will undergo
uniform displacement. This implies neither uniform stress nor uniform
strain, However, it enables us to use sectionally uniform strain in
the direction of load for a uni-axial load field, We devide the
element into columns with a very small cross-sectional area. The
strain in z-direction within a column can be assumed to be uniform,
except those containing parts of the inclusion., If we replace these
heterogeneous columns with homogeneous ones that have equivalent
elastic properties, then we will be able to use the theorem of minimum

potential energy for the system,
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In order to find such equivalent elastic modulus, we assume that
the stress is constant throughout individual heterogeneous columns,
From the principle of least work,

E - ElEZ
el E1Z;+EXd-Z,;)

where E.; is equivalent modulus of individual column, The equivalent
modulus of the column containing the entire inclusion is obtained by
averaging over the area,

Ee = Ee;‘A.',

A
1 E. E
T A jA Ezd+(E|"'Ez)z dz

Im

2 jA?ﬁ:{i—_—p-ﬁ-dz (12)
The effective modulus of the element becomes then,
E= ( E/A, + Beds )/( Ay + A; ) (13)

Equation (13) has been obtained through utilizing both theorems
used in deriving the bounds, and can be used for any shape of
inclusion., However, we can readily perceive that this formula will fit
best if the inclusion is granular, i.e., if the three dimensions of
the inclusion are about the same,

For a composite with spherical inclusions, equation (12) becomes,

Ee 23 € 23
B, = -1 18 =-pa * X(1-p) ()
and, EE-:'- = (%-1 )go(z+1 (15)

For cubic inclusions,

3
p+2 1-p ) &

For cavities, E, is taken to be zero, hence E,=0. This is

Ee
E,
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reasonable since the deformation of rock containing a spherical void
is the same as that containing a crack normal to the load (63).

Equation (13) becomes, for void inclusions (spherical),

E=E; (1 - ]-f—o(n) (16)

where 7 denotes porosity,
The effective Poisson's ratio is obtained simply by combining
E, Ei, and Ez. From equations (8), (9) and (10),

1-20 _ 1-2)) -2l

1
B - E, f + s (1-1)
Hence,
V= %{1 - (1-22)p g-zy,)g-f)E} (17)
when E = E¢y = E;
V= fU+(1-f) ), (18)

The effective shear modulus can be found by using equation (il1a),

E. Comparison with available experimental data, The values

calculated from equation (15), assuming spherical inclusions, were
compared to the experimental results in order to examine the accuracy
of the expression. Figure 4 shows a comparison of predicted E to
experimental data obtained by Nishimatzu and Gurland (56) for an
alloy system of tungsten carbide (inclusion) and cobalt (matrix).

The following values are taken from reference 56:

Ei = 30 x 10° psi

E,

102 x 10% psi
y4) =0,3

2/,;,=0,22
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As is readily seen, the formula correlates the experimental data
quite well,

In Figures 5 to 9, the formulas are compared to the data by
Mandel and Dantu (40), The material used for this experiment was an
epoxy type resin called Araldite with five different materials for
inclusions, The average values for matrix are }z;x=.l+5x106 psi and

2=,40, The elastic properties of the inclusions are (40),

Inclusions E, Yy

Steel balls 31,2 x 10° psi 0.30
Diorite 14,6 x 10° psi 0.20
Limestone 11.2 x 10€ psi 0.25
Sandstone 8.3 x 10° psi 0.25
Lead balls 3.3 x 10° psi 0.40

In general, the equation (15) seems to agree to the experimental
data better than the other two, The most remarkable example is seen
in Figure 9,

A further verification of the approximation formula is shown
in Figure 10. The data was obtained from reference 65, where the
experiments were made on a tungsten alloy with copper. The elastic
moduli of tungsten and copper were 59,0 x 10° psi and 17.56 x 10° psi,
respectively.

The main concern of this paper is the behavior of granular rocks.
Artificial rocks made of plaster and water were used in the experimental
verification of the theory since their properties can be more easily
controlled than with real rocks. The types of plaster used and test

results are shown in Appendix C,
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Figure 4-6. Young's modulus of Araldite-sandstone composites
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The ratio of measured Young's modulus to £4, assuming E, to be
2.5 x 10° psi, is plotted against porosity in Figure 11. The
predicted values by equation (16) agree remarkably well with the data
in view of the assumptions made above, It was observed that when the
porosity exceeds 40 per cent, the plaster specimens behaved quite
non-slastically, This may be the probable cause of lower values of

experimental data than those predicted in high porosity ranges,
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CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE INVESTIGATIONS

Analytical solutions for stresses in elastic composites with
spherical inclusions have been obtained on the basis of mathematical
theory of elasticity. The basic assumptions used were that individual
material composing the composites is homogeneous, isotropic, and
perfectly elastic, and that the boundaries of representative elements
deform uniformly,

The solutions indicate that the failure criteria of composite
elastic materials are complicated functions of .}, E,;, S;, d,(e, b
and J, Some significant results are as follows:

a) when the composite is extended (compressed), the maximum

tensile (compressive) stress on the grain boundary increases as

s B» and Y increase;

b) when compressed, the maximum tensile stress and maximum

extension decrease very slowly with increasing « and ¥, but

increase somewhat as f increases;

c) for void inclusions, the tensile stress developed due to

compressive load increases as  increases;

d) the maximum shear stress varies similarly to the maximum

principal stress,

Combining these solutions with Griffith's microcrack theory
provides a new failure criteria for brittle granular rocks, wWith this
theory, most phenomsna in failure of brittle rock that were not
possible with other theories can be easily explained without

assumptions, such as friction on erack surfaces or hardening of cracks,



For example:

a) The ratio of compressive to tensile strength is not exactly
eight, but is a function of the properties and their ratios of
individual minerals composing the rock, It may vary from less
than eight to greater than 100.

b) High stress concentrations along the grain boundaries are
responsible for frequent failures along the grain boundaries,
This eliminates the assumption that micro cracks concentrate
along such boundaries to explain the failure,

c¢) The inter-granular or intra-granular failures are determined
by the physical properties of the composite.

d) The stress rises very rapidly as )'increases, This may explain
why rocks are weaker when wet,

The theory also agrees with experimental data quite well, Thus
the theory appears to provide a near perfect model for brittle and
elastic granular rocks, from both the mathematical and experimental
viewpoints,

As part of this thesis, approximation formula for effective
elastic moduli was obtained through combination of two theorems from
the theory of elasticity., From the comparisons with test results, the
formula was proven to give better approximation than other formulas,

A more extensive experimental study with granular rocks is
suggested for further verifications of the validity of the theories
obtained in this paper. Zxtension of the theory into three dimensional
failure eriteria requires a verification., This may be done by
comparing tri-axial test results with the solutions superposed in three

directions. The superposition may be made easier by direct use of the
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digital computer. Rock usually becomes plastic at a very high
confining pressure, Hence there should be certain limits to the
applicability of the theory. The three dimensional criteria may be
used to find such limits for rocks,

By applying different boundary conditions, stresses in an
anisotropic material can be analysed. This may be done by using a
parallelopiped instead of cubic element, In this case, however, the
stress functions might be different from those used here, depending
on the boundary displacement function.

Some rocks contain cracks (macro size) along the grain boundaries
due to pre-existing stresses. Analysis of such composites may be made
by assuming imperfect bonding or no bonding at all between the grain
and matrix. The resulting solutions might give a better description

of real granular rocks,
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APPENDIX A

COMPARISON WITH SCLUTIONS BY FINITE SLEMANT TECHNIQUZ

The theoretical solutions are compared to the solutions obtained
by means of finite element technique, The composite cube would have
been an ideal model to compare displacements of spherical boundaries
to those obtained by theoretical solutions, but because the computer
program for three dimensional analysis was not available, a cylinder
containing a spherical inclusion was used as a model., One disadvantage
of the finite element method is that it does not give stresses at the
boundary. Thus it requires finer meshes along the boundaries to
obtain better approximations, Due to limited computer time allowed,
however, a very simple mesh (Figure 1) was used.

A1l solutions are for o« = 5/8. The displacements of outer and
grain boundaries are also compared, For the purpose of comparison,
the stresses obtained from theoretical solutions were converted to
those in the cylindrical coordinate system, and the displacements from
finite element analysis were converted to those in the spherical
coordinate system. All displacements and stresses are calculated at

the points on a vertical plane containing the center of the inclusion,
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APPz=NDIL B

STRES5ES ALONG THE GHRAIN BOUNDARY

Principal stresses, maximum stress differences, and induced
stresses in principal directions in matrix are listed here for
reference, All stresses were calculated on the basis of &; = 100,000
psi and 4= .1, and then divided by the apparent stress, The apparent
stresses were calculated from 0 = w, E/d and E was calculated from
equation 4~15 when possible, Because of the truncation error by the
computer, when o(= ,75, the value of E becomes negative, depending on
the value of 3, For such cases, E was calculated by using equation
4-44, Values are listed for @ ranging from O to 90 degrees in 15
degree increments,

The effective Poisson's ratio, J, was calculated from equation
4-7, which gives the upper bound. Because of this, the calculated
values may be somewhat higher than actual values, The constants for
solutions were directly calculated by solving the 9 by 9 matrix with
the Gaussian elimination method. The listed are in the order of Gy
6,0 0;, O,-6;» Goy» ez and (g5 The subscripts 1, 2, and 3 are

given in the order of the absolute magnitudes of stresses, and the

subscript e denotes induced stress,
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APPENDIX C
RESULTS FROM TESTS WITH ARTIFICIAL ROCKS

1, Materials and mixtures. Two types of plaster, Hydrocal B-11

and Hydrostone (U. S. Gypsom Co,), were each mixed with water. The
true specific gravities of Hydrocal and Hydrostone were found to be
2,19 and 2,30, respectively.

In order to give various porosities, different amounts of water
were used and mechanical vibration was sometimes employed. The mix
was poured into 2" inside diameter and 12" long cylindrical plastic
tubes. The mix was hardened enough to be taken out of the mold in
about two to five hours, depending on the mixture, Specimens thus
made were air-dried and cured at room temperature for about thirty
days, before they were ready to be tested.

2, Tests made. All the strength tests were made with a Tinus-
Olsen testing machine of 120,000 lbs. capacity.

a. Flexural strength test. The specimens were tested without

cutting, in a center-point loading device with a span of 5",
The edge of the upper plate was carefully lined with the center
of the lower plate to minimize the effect of non-uniform shear
in the specimen, All specimens were loaded at a rate of 400

1bs/min,
b. Uniaxlal compressive strength test, About 4* from the top

and bottom of 12" specimens were cut off with a diasmond saw to
obtain homogeneous specimens, The length of the specimen was

about twice the diameter. The top and bottom faces were made



smooth and parallel to each other with a grinding machine
within +.005", The specimen was then placed in the testing
machine and loaded at a rate of 60 psi/sec.

c. Uniaxial tensile strength test. The preparation of the

specimen was the same as for the compressive test. The specimen
was glued to the upper and lower platens with structural adhesive.
The platens are connected to the loading plates with a pair of
roller chains to prevent moment from developing in the specimen,
The plates attached on upper and lower loading plates to hold

the chains were designed so that the center line of specimen will
lie within +0,020" from that of the loading machine (65). When
the specimen broke at the ends very close to the platens, the
results were discarded. The loading rate was 50 psi/sec.

d. Brazilian (indirect tensile) test, Specimens for this test

were cut off from the flexural test specimens after they failed.
The lengths vary from 1" to 2", The loading rate was about 400

to 500 1bs/min,, depending on the specimens.

e, Apparent porosity. All specimens tested were measured for

the apparent porosities, The dry and wet weights of specimens
were obtained by weighing specimens before and after immersing
them in water for twenty four hours.,

f. Young's modulus. Wire type polyester strain gages (Tokyo

Sokki Co.), 3 cm, size, were attached to each sample with
Eastmann 910 adhesive. All the values given here are initial

modulil .
The test results are listed on the following pages. The
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mmber of specimens tested for each mix is four unless indicated
otherwise in the parenthesis after each value, The strengths
shown are the averages of them. The symbols Sf, Se, St, and Sb
denote flexural, compressive, tensile, and indirect tensile

strengths, respectively,



No,

[0 o B ON \n £ W

Porosity
#

30.5
52.5
k2,5
18,0

3.0
3245
3%.0
29.0

TABLE I,

10 psi

1,12
.25 (2)
Lo (2)

1,57

2,25

1,06

93
1.20

TESTS WITH HYDROCAL B-11

st
psi

52k
274 (6)
H2 (6)
920
1494
579
b3
627

Sc
psi

1291

333 (5)
642 (6)
1875
489
1318

822

1692

St
psi

188
85 (5)
150 (5)

410
603

07

2

3%

Sb
psi
201
75 (12)
140 (12)
Los
551
23+
184
265



No,

o 0~ N \n F W

Porosity

SHe5
41.0

19.5
18,0

30.0
27.0

10,5

TABLE II.

E
10 psi

.25 (3)

.50 (3)
1,40
1,60
1,15
1,18 (2)
2,10

2,00

TESTS WITH HYDROSTONES

St
psi

124 (3)
235 (3)
991
1071
7H1
715 (2)
1384
134

154 (3)
805 (3)
2381
3196
1218
153 (2)
17
2300

psi

51 (3)
220 (3)

504
240
258 (2)
537
k30

psi

150 (3)
23
b32
g
iy (6)
239
524
462

L6



APPENDIX D
CONSTANTS FOR STRESS SCLUTIONS IN MATRIX REGION

BASED ON E¢ = 10° psi and 2i= 0.1

86



B

VAR ZA) ¢

001

= .2

"'.G

P’ 1\0

rﬂo

(~ 4

A B, C, D, E,

[ «95 -0.7905E-04 0.6410F-04 ~0.1990F-03 0.3806E-03 0.1535E-04
oI5  =0.4R34E=-04 0.2539F-04 -0.1598F-03 _ 0.2868E-03 _ 0.5047F~04
+55 -0.2380F-04 0,6583F-05 -0.9361F-04 0.16756-03 0.4110F-04
235 -0.7419E-05 0.8198E-06 =0.2946E-04_  0.4204E-04 0.1613E-04
<15 -0.61586-06 0,1274E-07 -0.2427F-05 0.2608E-05 0.15256-05

495 -0,8892F-04 0.6661F-04 -0.1924F=03 0.3323F=03 . 0.1595E-04

.75 -0.5411F-04 0.2630F-06 -0.1520E-03 0.2295E-03 0.5238E-04

455 -0.2557E=04_ 0.6746E-05 -0.86886-04 0.1230E-03 0.4211E-04

.35 -0.7521F-05 0.8239F-06 -0.27796-04 0.3198E-04 0.1621E-04
215 -0.6160F-06  0.1274F=07 =0.2359F=05 _0.2190F-05__0.1523F-05

g5 T 9BRTE=05 0.AIT4F=0% -0.1859E-03 0.2839€-03 0.16556-04

j .75 =-0.5989E-04 0,2726E-04 -0.14426-03 0.1720F-03 0.5429E-04
55 =0 2TTIE= TEI09T=05 =0 G0T4E=04 0. 7846F=04 0.4313F=04
.35 -0.7623E-05 0.8281E-06 -0.2611E-04 0.2189E-04 0.1629€-04

IS =0 BT TE=NE UL TZT5E=07 <0.228%=05 0.177TE-05 0.1534E-05

-0.,1723¢-03 0.8800F-04

« 95

- - P =
[} e 1 S

.56 ~0,4039F-04 0.,8128F-05
" .15 =DURE3IS54F-05 0.R5BU9F-06
.15 -0.6157F-76 0.1277F-07

-0.1366F-03 -0.7950F-04 0.2107€E-04

- "05.
~-0.2970E-04 -0.2554E-03

-0.135RE-04 -0.5763F-04
~0.1752E-05 -0.1373F-05

~~03 0.6859F-04

0.5075€E-04
0.1689E-04
0.1533¢-05

F,
0.9290F-04
0.5827E-04
0.2870E-04
0.8910E-05
0.7549E-06

0.9655E-06

0.6047E-04
0.2941E~-04
0.8955E-05
0.7551F=06 _

0.1002¢-03"

00 6267E‘
‘673@IZE~:§

0.9000F-0%
0.75536=05 "

0.1275€-03

0., TITTE=D%

0.3544E~04 -

o;qazst—isﬁ

0.T56TE~06



A= .10

=2

‘"'06

=1,

J’t‘b.

« A By c, D, E,
+95 -0.7215E-04 0.56468E-04 -0,17956-03 0.3608F-03 0.1387F-04
215 =0.43256-04 0Q.2170F-04 -0.1410F-03 0,2722FE-03__0.4356F-04
+55 -0.2095E-04 0.5481€-05 -0,8091F-04 0,1593FE-03 0.3427E-04
«35 =-0.6456E-05 0,6656E-06 -0.,2460F-04__ 0.3929F-04 0.1310E-04
«15 =-0.5348F-06 0.,1022F-07 -C.1986F-05 0.2375E-05 0.1235F-05
_ 295 -0,B8046F-04 0,5918E-04 -0,1730E-03 0.3080F-03  0.1451F-04
j + 75 =0.4791E-04 0.2265F-04 -0.13336-03 0.2117F-03 0.4549E-04
.55 -0,2224E-04 0.5655E-05 =0.74335-04 0.11356-03 0.3537E-04
5.35 -0.64T1E-05 0.,6743F-06 ~0.2307F-04 0.2896FE-04 0,1326F-04
215 -0,5281F-06 0.1031F-07 -0.1931F~05 0.1937F-05_ 0.1244E=05.
.95 =0.8848F-04 D.AIA9F=04 -0.1664F-03 0,2542E-03 0.1514F-04
.75 -0.5236F-04 0.2360F-06 -0.12556-03 0.1503F-03 0.4742E-04
55  =0.72343F=04 0.5830FE-05 -0.6TT3E-04 0.6724E-0& 0.3646F-04
«35 =0.6459E-05 0.6R27F-06 -0.2153E-04 0.1854E-04 0.1343E-0¢4
.15 =0.5700€-06 0.,1079F-07 -0.1852E-0%5 0.1493E-05 0.1241E-05
.95 =0.1013E-03 0,8036F-04 -0,1174E-03 -0.2836F-03 0.2014E-04
5 =0.5510F-0%4 0.3065F-04 -0.6720E-04 -0.3958E<03 0.6203E-04
.85 ~=0.2022F-04 0.71076-05 -0.1809€-04 -0.3134F-03 0.4453E-04
- 4% T=0.&0TAF=0% 0, T3BTE-06 -0.9778F-05 -0.6610F-04 0.1452E-0%
w -0.2921E-06 0,10885-07 -0.1408F-05 -0.2303€-05 0.1308€-05

.15

F,

0.8229E-04
0.5005E~-04
0.2393F-04
0.7236E-05
0.6054E~-06

N0.8594E-04 .

ND.5226E~04
0.2469E-04 _

0.7330€-05 .
~-0e610TE=064

0.8959E-04
0.5446F~04
0.2545€-0%
0.7421E-05
0.615TF~06

0.1169E-03

0.7095F-04
0.3106E~04

0.8025F=0%
0.6445E-06

00T



A = 1,001

"'.2

ret.

a4,

o A, B, 7 D, E, F,
+95 -0.1248E-04 -0.4631E~05 -0.1385F-04 0N,1R92F-03 -0.13495-05 -0.6829E-05
215 =-0,6384F-05 -0.1403F-05 -0,1801F-04__0.1662F-03 -0.2984E-05 -0.3318E-05
.55 —0.2766FE-05 ~0.3014E-06 -0.1369E-04 0,1070E-03 -0.1911F-05 -0.1327E-05
_«35__-0,8036E-06 -0,3245E-07 -0,25786-05 _0.23025-04 —0.6432E—06 -0.3531E~06
i.ls =0.6512E-07 -0.4726E-09 0.54B4E-07 - 0.1026F~-05 -0.9498F-07 -0.2800E-07
295 -0,7595F-05 -0,2351F-05 -0,6820F-05 0.9846E-04 -0,6926F-06 -0.34T1E-0Q5
" «75 =0.3808F-05 -0.7169F-06 -0.8913F-05 0,8488F-04 -0.1529F-05 -0.1697F-05
E.ss -0,1570€-05 -0,1530E-06 ~0.6B811F-05 _0.5405E=04 ~0.9701E-06 -0.6739F-06 -
T:35 -0.4286E-06 -0.1621F-07 -0.1309F-05 0.1159E-04 ~0,3040F-06 ~0.1764E-06 .
:.15 ~0.3423F-07 -0,2352FE-09 0,2693F-08 0.5179F-06 ~0.9989FE=07. -0.1394E-07
".95  0.T1R4F-06 -0.5727F-07 0.1884E=06 -0.525TE-06 -0.1333F-07 -0.8461F<07
<75  0.5726E-07 -0,1756E-07 0.12926-06 -0.3490E~06 -0.3793F~07 -0.4163FE-07
.55 0.2258E-07 -0.3724E-08 0.5413€-07 -0.1883E-06 -0.2250E-07 =0.1641E=07
.35  0.5817F-08 -0.3886F-09 0.1397€-07 -0.4201E~07 -0.4776E-08 -0.4229F-08
<T5 T 0.4579E=09 -0.5617F-11 0.3487TE-08 -0.2058E-08 -0.4546F-08 -0.3379E=05"
.95  0.4169F-03 0,1713F-04 0.5127F-04 ~0.1//3E~02 0.98B4E-05 0,25 (0E=04
<75 0.1389F-03 0.5427F-05 0.6578F-04 -0.9539F-03 0.1211E-04 0.1311E=0%
.55  0.3990F-04 0.1119E-05 0.5137E-04 -0.4862E-03 0.7161E-05 0,4964E-05
3% DJTOOTF=05 0.1056F-06 0.1017E-04 -0,9805E-04 0.2079€-05 0. 1150E-05"
.15 0.4983E-06 0.1487E-0R 0.2798E-06 -0.4576E-05 0.1708E-06 0.8810E-07

10}



m’io

rd‘.

A A By C, D, E, F,
.95  0.1028E-03 -0.1099£-03 0.29235-03 -0.1423E-03 ~0.4204E-04 -0.1670F-03
275 _ 0.4100F-04 -0,2438F-04 0.11643F-03  0.2997F-04 -0.5598E-04 -0.5965E-064
%.ss 0.1564E-04 -0.4562F-05 0,3700F-04 0.54106-04 -0.2935F-04 -0,2031E-04
E.35 0.4289E~-05 ~0,4546F-06  0.1077E-04 0.8374E~05 -0.8964E-05 ~0.4955F~0Q5
1 e15  0.3414F-06 -0.6423E-08 0.1006F-05 -0.1433E-06 -0,7713E-06 -0.3806E-06
295  0.1316F-03 -0.1086F~01 0.3027F-03 =0,3017E=03 =0.4222E-04 -0.1653F-03
1«75 0.5085E-04 -0.2437€-04 0.12756-03 -0.7226FE-04 -0.5620E~04 ~-0.5974F~-04
|e55  0.18415-04 ~0.4533F=05  0.4531E-04 —0.3382E-05 -0.2919E-04 —0.2020E~04
435 0.4T43E=05 -0.4445E-06 0.1226E-04 ~0.32826-05 -0.876TE=05 -0.4845E~05
lal5  0,3721E-06 ~0.625TE-08 0.1057F-0% =0.6497E=06 —0.7492E=-06_=0.3708F-06
"e95 " 0.,I670E-03 -0.1072E-03 0.2121£-03 -0.4803E-03 -0.4243F-04 -0.16356-03
«75  0.6234F-04 -0.2433F-N4 0.1405F~03 ~0.1794F-03 -0.5635F-04 -0.5976E-04

55 D.2154F-04 —0.4501F-05 0.5361F-04 ~0.6204FE-04 -0.2901F<04 -0.2007E-0%
¢35  0.5235E-05 -0.4345E-06 O0.1375€-04 -0.1508F-04 —0.8571E-05 —-0.4736F~05
%.15 0.4048E-06 —0.6092F-08 0.1T00E-05 -0.1164E<05 =0.7286E-06 -0.3610E=08
295  0.1094E-02 -0.9334E-04 0.38726-03 -0.3720F-02 -0.46756-04 -0.1471E-03
75 U, 2%19F=03 -0,2292F-04 0,72331E-03 -0.1250F-02 -0.5601F-04 <0 .5TTIE=04"
55  0.6233F-04 -0.4162F-05 0.1146E-03 -0.5507€-03 -0.2711E~04 -0.1869E-04
0357 TULI0RTE=0% =0.3627F-06 " 0.2399F-04 -0.1083E-03 <0.7163E-05 -0.3958¢E<05"
.15 0.7409E-06 -0.4948F-03 0.1440F-05 -0.5274E~05 -0.5999E~06 -0.2932E~06

201



A= 10,

r"z

= .6

=1,

=4,

o A B, C, D, E, F,
1«95  0.3832E-03 -0.31196-03 0.9806F-03 -0.9484E-03 ~0.1882F-03 -0.5072E-03
275 0.9947FE=04 -0.4527F=04 0.2502E=03 =0.1381E=03 ~0.1147E-03 -0.1160E=03
.55 0.3307E-04 =0.7594E-05 0.7443E-04 0.4003E=05 -0.4980E-04 -0.3427E-04
.35 611F-05 -0.7 ~06  0.1925F=04 =0.4053E-05 -0.1426E-04 —0.7875€-05 _
{o15  0.6753E-06 -0.1001E-07 0.1676E~-05 ~0.1105F~05 —0.1208E-05 ~0.5934E~06
295 0,64614E-03 -0,3150E-03 0,1009E-02 -0,1250E=02 =0.1938E-03 ~0.5139E=-03
.75  0.1153£-03 -0,4634E-04 0.2702F-03 -0.2576E-03 —-0.1178F~03 -0.1189€-03
.55 0.3650E=0& —0,T710£=05  0.8449F~04 ~0.5540E=0% =0.5059E-04 -0.3481E-0&
.35  0.8948E-05 -0.7195F-06 0.2100£-04 -0,1537E-04 -0.1422E-04 -0.7855€-05
.15 0.6919F-06 -0.9943F-08 0.17156-05 -0.1570F-05 -0.11RRE-05 -0.5892F=06
95 TT0.5507E-03 —0.3176F-03 0.1038F=02 -0.1583E-02 -0.1997E-03 -0,5203E-03
.75 0.1323E-03 -0.4738E-04 0.2901E-03 -0.3804€-03 -0.12096-03 -0.1218€-03
B8 0.40116-04 ~0.TB23F-05 0.94556-0%4 -0.1154E-03 -0.5137E-04 ~0.3534E-04
.35  0.9297F=05 -0.TIT5F=06 0.2274F-04 -0.2676E-04 =0.1418F 04 -0.7834E-0%
S5 N.INOIE=D6 =0.98T4E-08 0.1TTTE=05 <0.20451F-05 <0.1174E=05 -0.5851E=06
.95  0.1946E-02 -0.3245F-03 0.1241F-02 —-0.6170E-02 ~0.2581E-03 -0.5579F-03
75 0. INIEF=0T =0.5390E=04 0.4341E-03 =0.1424F-02 <0.14276=03 <0. 1411607
.55  0.7347E-04 -0.8577E-05 0.1688F~03 -0,5827E-03 =0.5669E-04 —0.3892E-04
=35 0.T234F-0% -0.7025F-06 0.357BE-04 -0.1131F-03 -0.1390E-04 -0.74756=08
.15 0.B529F-06 -0.9369F-08 0.2233E-05 -0.5595F-05 ~0.1117E-05 -0.5553€-06

€ot



‘!'~3°-

J".Z

r. l.

I b,

| .95
219 0.1335F-03 ~-0.5497F-0%

d A! Bt c] D‘ E‘

0.1800E-02 ~0.1994F-02 -0.4450E-03
0.3195E-03 ~0,2358F-03 =0,1457E=-03

0.7469E-03 -0.4999E£-03

|

0.8948E-04 -0.1961FE-04 -0.5809E-04
Ne22376-04 -0.9484FE~-05 -0.1621FE-04
0.1887E-05 -0.1513E-05 -0.1352E~-05

55 0,41286-04 -0.8764E-05
| «35 0,1050€~04 -0.8190E-06
| «15 0.8181£E-06 -0.1130€-07

1295  0.8717F-03 -0,5114F-03
' «T75  0.1514F-03 -0.5634E-04

455 0.447T6-04 -0,8952€-05
.35  0.1074E-04 -0.8210E-06

0.3439E-03 -0.3613E-03 -0.1517E-03
0.1004E-03 -0,7917E~-04 -0.5935E-04
0.2424E-04 -0,2051E-04 -0,1625E-04

0.1865E-0? —Q.72430F-02 —-0.4617F-03.

Fy
-0.8823€-03

~0.1439E=-03...

-0+3985£-04

_~0.8950E-05:.

-0.6696E~-06"

=0.9057€-03
-0.1487E-03
~0.407T1E-04
~0.8972E-05

Lils 0.8252E-06 =0,1127E-07 0.1952E-05 -0.1954E=05 =-0.1349E-05 =0.6681E-06
w95 0.T006F-02 =0.5224F=03 0.1930F-02 -0.2894€-02 -0.4788E-03 -0, 9286E-03 "
.15  0.16986-03 -0.5809E-04 0.3683E~03 -0.4883E-03 ~0.1567€-03 -0,15356-03
<55 0.4832F-04 —0.913BF-05 0.TI13F-03 -0.1391F-03 -0.6061E-04 ~0.4157E-04
.35  0.1098€-04 —0.8230F-06 0.2611€-04 -0.3158E-04 ~0.1628E-04 —0.8994E-05
~ N =06 =0. = <?02TE=05 -0.2394E-05 -0, 134TE-05 ~0.6667E=06
'495  0.2651E-02 -0.5877F=03 0.2395F-02 -0.7621E-02 -0.6222E-03 ~0.1085E-02
. . 3738F-0% -0. F- 5487F-03 -0.1485F-02 -0.1935F-03 -0.1878€-03
e55  0.7710E-04 -0.1049F-04 0.1927E-03 —0.5932E-03 —0.6978E-04 —-0.4782E~04
o35 0.T28BE=04 =0,8372F-06 0.4006F=04 -0.1147E=03 -0.1657€-04 -0,9151E-05"
<15  0.8884F-06 -0,1107F-07 0.2545€-05 -0.5697E-05 -0.1329E-05 -0.6560E-06

%01



p‘ ‘w.

r=.2

=6

I"io

oA A, ‘B, C, B E, Fy
.95  0.1061E-02 -0.56209E-03 0.2471F-02 -0.2896E-02 -0.7066E-03 -0,1170E-02
« 15 0. 1494FE=03 -0.5835F-04 0.3500F-03 -0.2816F-03 =0.1614E-03 -0.1560E=03_
455 0.44T4E-04 -0,92156-05 0.9542E-04 -0.2957E-04 -0.6138E-04 -0.42056-04
L.as 0.1127E-04 =0.8561F-06 0.2356F=04 -0.1170E-04 -0.1695E~04 -0.9359E=05
415  0.8759%-06 -0.1178E-07 0.1969E-05 -0.1680E-05 -0.1410E-05 -0.,6983F-06
495 0,1211E-02 -0.6412F-03 0.2573E=02 =0.3405E=02 =0.7343E=03 -0.1211E=02
.75  0.16796-03 -0.6045F-04 0.3766E-03 —0.4088E-03 -0.1673E-03 -0.1617F-03
.55 0.4820E-0%4 -0,9433F-05 0.1067E-03 -0.8905E-04 -0.6284E-04 —0.4305E-04 .
.35  0.1146F-04 -0.8597F-06 0,2548F-04 -0,2259F-04 —0.1702F~04 -0.9399E-05
185 0,8785F-06 —0.1178E-07 0.2042F-05 ~0,2107€=05 =0.1414E=05 -0.6979€=06
.95 0.T366E-02 -0.6612F-03 0.26756-02 -0.39286-02 -0.7623E~03 -0.1251E-02
«75  0.1866F-03 -0.6255E-04 0.4032E-03 -0.5368E-03 -0,.1732E-03 -0.1674E-03
. F=0 2 7 <6430E-04 -0.4404E-06
<35  0.1164E-04 -0.8633F-06 0,2740E-04 ~0.3350E-04 -0.1709E-04 -0.9438BE-05
.15 0.8BIIE-06 -0.IT7TE-D7 0.2119E-05 =0.2535E-05 -0.1416FE~05 -0.6976F-06
.95  0.2689€-02 -0.8011€-03 0.3422E~02 -0,8306E-02 —-0.9787E-03 -0.1543E~02
75 0. 3318F-03 -0.1199F-04 0.6010F-03 -0.1508E-02 -0.21T2E-03 ~0.2093€=03
.55 0.7843E-04 -0.1127E-04 0.2025E-03 —0.5970E~03 -0.7514€E-04 -0.5145FE-04
3% T 0.13075-04 -0.8900F-06 0.4174E-04 -0.1152E-03 -0.1762FE-04 -0.9730F=05"
.15  0.9012F-06 -0,1173E-07

0.2656E-05 —0.5734E-05 -0.1404E~05 -0.6949E-06

so%



,?. 1600,

r=.2

V=1,

I,

+95  0.12575-02 -0.6833E-03 0.2879E-02 -0.3459F-02 ~0.R834E-03 -0.1339¢-02
o158 0.1563E-02 -0,.5988F-04_  0.3430F-013 =-0,3014F-03 ~-0,1677E-03 -0.1611FE-03
1 +35  0.4618E-04 -0.9395F-05 0.9781F-04 -0.3370E-04 ~0.6271E-04 -0.4793E~04
'35 0.1159E-04 =0.BT0RE=06  0.2404F-04 =0.1261F-04 -0.1724E~04 -0.9522E~05
'+15  0.8994E-06 -0.1198E-07 0.20036-05 -0.1748E-05 —0.1431E~05 -0.7097€-06
1,95  0,1416F-02 -0,7096F-03 0.3005F-02 —-0.3994F-02 -0.9180F-03 -~0.1391FE-02

0.3905F-03 -0.4292E-03 -0.1740E-03 -0,1672E-03
0.1093F-03 -0.9313€-04 ~0.6426E-04 -0.4399E-04%
0.2597E-04 ~-0.2343€E-04 -0.1733E-04 -0.9569E~05%
0.2074F-05 ~0.2170F-09 =0.,1429E-0% -0.T1098FE=-0N4

:.75 0.1750F-03 -0.6213E-04
0,4962f-04 -0,9626E-05
35 N.1175F-04 -0.8751E-06
0.9001F-06 -0,1198F-07

e 9" . -07? -0, T~ . £-02 -0.4532F-02 -0.9528E-03 ~0.1443F-02
15 0.1938E~03 ~0.6438E-04 0.4180F-03 -0.5574£-03 -0.1803E~03 -0.1733F-03
-0.6580E-04 -0.4505E-04
0.2791€-04 ~-0.3428E-04 -0.1741€E-04 -0.9615€E-05
) .1435E-05 -0.7099¢€-06

«35 0.1192E-04 -0,8794E-06

0+4075£-02 -0.8605€E~02 -0.1214E-02 -0.1830F-02
75 0.3350F-03 -0,8120E-04 0.6238E-03 -0.1518F-02 -0.2276E-03 -0,2186E-03
%.55 0.78956-04 -0.1158E-04 0.2065E-03 -0.5985E-03 =0.7734E-04 -0.5294E-04

T35 0. I315F-04 -0.9112F-06 0.42426-04 —0.1154E-03 —0. I1804E-04 -0.9964E=08"
.15 0.90626-06 -0.1199E-07 0.2701F-05 -0.5748E-05 ~0.1433E-05 -0, 7106E-06

« 9% 0.2793F-02 -0.9312€~-03

90%
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