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ABSTRACT 

Analytical solutions o£ stress £or composite material are 

obtained by means o£ mathematical theory o£ elasticity, assuming 

spherical inclusions and uni£orm displacements o£ boundaries o£ 

representative elements. These solutions show that the £ailure 

criteria o£ composite materials are compl.i.cated f'unctions o£ the 

elastic moduli o£ matrix, inclusion and composite, and the volume 

ratio of' matrix and inclusion. Combining this theory with Gri£f'ith • s 

theory gives a new criteria £er brittle £ailure of' granular rock. 

This theory appears to provide a nearly per£ect model £or granular 

rocks, inasmuch asa a) most assumptions used in other criteria are 

eliminated, b) most phenomena in £ailure of' britUe rocks can be 

described theoretically, and c) it is the most logical so £ar. 

A simple £ormula that relates the elastic moduli o£ inclusion 

and matrix to the ef'£ective moduli o£ the composite is also derived 

as a part o£ the thesis. Comparison with experimental data indicates 

that it approximates the value better than other approximation 

£ormulas. 
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CHAPTER I 

INTRODUCTION 

1 

Rock is a naturally occuring composite material. This composite 

nature has been neglected in the engineering field dealing with rock, 

mainly because it is not practical to consider and it is virtually 

impossible to analyse theoretically. Geological defects in rocks, 

like faults, joints, etc., have more influence on designing an 

engineering structure in rock. However, the mechanical. and physical 

properties of rock are the most important factors in such designs, and 

have to be determined before considering the forementioned geologic 

defects. 

The mechanical and physical properties of rock are usually 

determined in a laboratory with small specimens cut from drill cores. 

Despite the extreme precautions taken in making and handling specimens, 

and carefully followed "standardized" techniques and methods in testing, 

the test results have shown a vast descrepancy in the properties of 

intact rock. This large variance has been accepted as one of the 

natures of rock, and statistics were heavily relied on to determine 

the proper values. 

Recently, as the knowledge of rock mechanics has advanced, some 

analytical stuqy on the basic properties of rock has been made for the 

better understanding of the behavior of rock under loads. But the main 

attention has been focused on the effect of "micro" cracks in an 

attempt to utilize Griffith's crack theor,y in formulating a failure 

criteria for brittle material like rock. 
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In this investigation, rock is treated as a two-element composite 

material. The three-dimensional theory of elasticity is used in an 

attempt to develop a rational basis for the study of basic properties 

of rock for which the inclusions can be assumed to be in a spherical 

shape. 

A. Purpose and scope of the thesis. Since most rocks (not 

minerals) are composite in nature, it is essential to treat them as 

composite materials. With the exception of a few sedimentar,y and 

metamorphic origins, the inclusions are generally granular shaped. 

The "granular rock" here is intended to refer to composite material in 

which the inclusion is of granular shape and the matrix and inclusion 

are both elastic and brittle, i.e., rock. 

The basic purpose of this thesis is two-fold: 1) to determine the 

strength variation of granular rock due to matrix-inclusion ratio and 

void ratio, and the basic strength of matrix and inclusion, and 2) to 

find a suitable expression to relate the elastic properties of 

granular rock to the elastic properties of matrix and inclusion(s). 

The results will enhance the understanding and knowledge of the 

physical and mechanical behavior of rock that is very different than 

other engineering materials. 

B. Ap-proach used in the investigation. The over-all properties 

of granular rock are considered to be quasi-homogeneous and quasi­

isotropic. This assumes that the inclusions are "perfectly-disorderly" 

distributed homogeneously (1) throughout the matrix. Thus, a unit 

element containing one inclusion represents the material with respect 
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to the ove~all elastic properties and the volume ratio of inclusion 

to matrix. The materials composing the matrix and inclusions are 

assumed to be isotropic, homogeneous and linearly elastic. 

3 

For the sake of theoretical analysis, the inclusions are assumed 

to be spherical. Chapter II is concerned with the stress analysis of 

an element with boundary conditions derived from reasonable 

assumptions. Chapter IV is concerned with determination of effective 

elastic moduli. These theories are compared with other existing 

theories and data available in Chapters III and IV. 

c. Literature review. In general, a homogeneous material with 

cracks or voids can be classified as a special kind of composite, the 

rigidity of the inclusion (void, crack) being considered to be zero. 

The attempt to find relations between the elastic properties and the 

strength of elastic solids and the effect of composite nature on the 

strength is not new. The main purpose of such investigations in the 

field of earth sciences is to understand the failure mechanism and 

deformational behavior, and in the other sciences it is to obtain 

stronger and stiffer engineering materials. 

Price (2, 3) attempted to derive a relationship between quartz 

content and the strength of sandstone and siltstone. His results show 

that the strength of rock increases as the quartz content increases. 

Judd and Huber ( 4) and D'Andrea et al ( 5) observed a curvi­

linear relationship between compressive strength and the density of 

rocks. 

Willard and McWi.lliams ( 6, 7) studied transgranular-intergranular 

fracture of granular rocks. They measured the distance increments of 



www.manaraa.com

4 

a fracture trace within grains and along grain boundaries in a thin­

sectioned disc of charcoal. gray granite. They concluded that 

transgranular defects are the predominant factor influencing the 

fracture of charcoal gray granite at low rates of loading. 

Brady (8, 9, 10) studied the brittle fracture of rock in relation 

to the density of microcracks in the rock, assuming a uniform stress 

distribution throughout the material. He concluded that total. 

failure takes place when the total microcrack density reaches a 

critical value. He also showed that the Griffith theory is not 

useful to the macroscopic failure of britUe material. 

Morgenstern and Phukan ( 11, 12) experimentally determ.ned the 

relationships between the strength and porosity and the porosity and 

relative compressibility of Bunter sandstone. They found that the 

porosity increases compressibility and decreases the strength almost 

linearly. 

Ishai and Cohen ( 13) made an experimental study of yield strength 

o£ epoxy composites and investigated the effect of filler and cavity 

content on the yield strength. 

Walsh and Brace (13, 14, 15, 16) investigated the effect of 

various Shapes of cracks on the compressibility of rock and the 

effects of grain size on the fracture o£ rock, both theoretically 

alld experimentally. 

Huang (17) used Weibul's theory to determine the relationship of 

porosity to strength and to the elastic modulus o£ aluminum specimens. 

Bortz and Nagao ( 18) found a good linear relationship between 

flexural strength and bulk density o£ commercial tar-bonded basic 

brick. 
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Brown and Hostaghel (19), Coble and Kingery (20), Hall (21), and 

others are concerned with rein!'orcing engineering materials with 

inclusions that are stronger than the matrix. 

The amount of theoretical work has been far less than that of 

experimental work. Goodier (22) appears to be the first to derive 

solutions for spherical and cylindrical inclusions in infinite media. 

Edwards (23) obtained solutions for spheroidal inclusions and cavities, 

Eshelby (24) for ellipsoidal inclusions, Sternberg and Sadowsky (25) 

for two spherical cavities, and Wilson and Gorie (26) for an imbedded 

spherical inclusion in an infinite elastic solid. These theories have 

been applied to composite materials (27h however, they are not 

applicable to composites where the distance between inclusions are 

smaller than about three times their diameter. 

More extensive work has been carried out by many investigators on 

the stuqy of the physical rather than the aforementioned mechanical 

properties of composite materials in relation to the properties of 

matrix and inclusions. Einstein (28) is apparently the first (29) to 

attempt such work. He studied effective viscosity of a viscous fluid 

containing rigid spherical inclusions. Later, various combinations 

of rigid, viscous or elastic matrix, and viscous, rigid, elastic, 

plastic or void inclusions were studied by Taylor (30), Froehlich and 

Sack (31), MacKenzie (32), am Oldroyd (33). Eshelby (24) seems to be 

the first to use the model in which the inclusion and matrix are both 

elastic materials. 

In all the studies mentioned here, the distance between two 

adjacent inclusions is assumed to be very large compared to the size 

of spherical. inclusions, so that the interaction between inclusions 
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can be neglected. Thus the theories are va1id only when the inclusion 

to the matrix volume ratio is very small (about 3 per cent or less). 

&nal.lwood ( 1.J.) , Guth ( 35), Mooney ( 36), Kerner ( 37), and Sa to 

and Furukawa (38) modified Einstein's equation to use viscous composite 

of higher ratio or inclusion to matrix. 

Only recently ( 1960) has attention been turned to elastic 

heterogeneous (high inclusion to matrix ratio) material. Paul. (39) 

was the first (29, 40) to obtain the bounds for the elastic moduli or 

heterogeneous solids. The upper and lower bounds were obtained by 

using the minimum potential energy theorem and ·the theorem of least 

work, respectively, of the theory or elasticity. Although these bounds 

are theoretically exact, they are too far apart to provide a good 

estimate of the effective Young's modulus. 

Hashin (41) obtained approximate bounds for two or more phase 

heterogeneous solids with spherical inclusions using the variational 

theorems. He assumed that the individual :matrix part surrounding an 

inclusion is also a sphere concentric with the inclusion. Later 

Hashin and Shtrikman ( 42 ) derived similar expressions without making 

assumptions about phase geometry, but the bounds were still too wide 

in most cases to be practical. 

The use of a single experimentally determined parameter, which 

is probably dependent on the ratio of Young's moduli or matrix and 

inclusion or two-phase solids, has been proposed by Wu (43). While 

this expression gives values of effective Young's modulus for &n¥ 

composite, the parameter itself must be determined by experiments. 

Approximate formulas for determining the overall elastic moduli 

or a multi-phase material composed or contiguous inclusions were 



www.manaraa.com

7 

obtained by Budiansky ( 44) , assuming that the grains of each phase 

are "more or less" spherical. His explicit formula for spherical 

inclusions shows that the modulus of matrix reaches that of inclusions 

when the volume ratio exceeds 50 per cent. 

Greszczuk used assumptions similar to Paul's in an attempt to 

obtain an approximate expression for the average elastic moduli for 

elastic inclusion and bounds for the rigid inclusion of composite 

solids from an engineering viewpoint. 
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CHAPTER II 

ANALYSIS OF STRESS 

In this chapter, the theoretical solutions for the stresses in a 

unit element are obtained on the basis of the mathematical theor,y of 

elasticity. We assume: a) that the substances are homogeneous, 

isotropic and linearly elastic, b) infinitesimal strain, c) absence of 

body forces in the medium, and d) uniform temperature distribution. 

The basic differential equations governing behavior of such 

elastic solids are known to be: 

a) equation of equilibrium 

Oj..:,j =0 (1) 

b) strain-displacement relations 

E · · ~(u · · + u· ·) ... ) =a ~,J J•"' (2) 

c) stress-strain relations 

(3) 

d) compatibility equations 

E ~ j' k.t+ E kt,;.j = E"-k,j1+ E. jl ,A.k (4) 

The solutions of an elasticity problem must satisfy equations (1) 

through (4) and the boundar,y conditions. In general, there are four 

types of boundar,y conditions that are given to a problem, i.e.: a) the 

distribution of forces on the surface is prescribed, b) the distributbn 

of displacements on the surface is prescribed, c) forces are prescribed 

over a portion of the boundar,y and surface, and d) components of 

surface forces and components of surface displacements are prescribed 
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over the boundary. 

Depending on the type of' problem, boundary conditions, and number 

of' dimensions considered, it is sometimes convenient to solve a 

problem when the governing equations are set entirely in terms of' 

stresses or entirelY in terms of' displacements. In particular, if' the 

displacement method is used, the stresses are uniquely def'ined by the 

stress-strain and strain-displacement relations so that the 

compatibility equations need not be used. 

or 

Substituting u 4 into equation (1), we have 

(i\.+p) uj,j.O. +puj.~.i.= 0 

The problem is now reduced to solving equation (5) with given 

boundary conditions. 

(5) 

A. Assumptions and boundary conditions. First, we assume that 

the representive unit element is a cube containing a spherical 

inclusion, and that the mass lies in a unif'orm uniaxial load f'ield. In 

order to analyse stress conditions in this element some simplif'ication 

of' the geometry of' the element and the assumptions are needed. 

When the heterogeneous material undergoes changes in geometry due 

to external load, the individual element also changes its shape. We 

visualize a cubic element whose sides are either perpendicular or 

parallel to the direction of' the load (or, we can cut an element in 

such a way that the sides will be parallel or perpendicular to the 

direction). we assume that the boundaries of the cubic element 
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remain straight after the deformation takes place. Thus, if the load 

is uniform and uni-directional, the boundaries of the element will 

undergo constant displacements. This assumption is theoretically 

correct if the inclusions are distributed in cubical arrangement. It 

is also reasonably valid for composites with homogeneously distributed 

inclusions {45). 

It is evident that the problem becomes much easier if we replace 

the outer boundaries with spherical ones. To find an exact boundary 

condition of the spherical surface that is replaceable with the 

constant displacement of the straight plane is impossible without 

knowing exact displacement functions between straight boundary and 

the inclusion. However, as wi11 be shown later, it is reasonable to 

assume that the displacement of spherical boundary is the same as that 

in a homogeneous material with the effective elastic Dl0du1i. That is, 

when the upper boundary of a cube deforms uniformly by w0 , the 

displacements of spherical plane of radius d within the cube are: 

u, = w2 [Cl-J1)+{1+JJ)cos 29] 
{6) 

u 8 =- ~ (1+.V)sin29 

Thus, the problem is reduced to solving a composite sphere with 

given boundary conditions equivalent to constant displacements. Other 

boundary conditions are that the displacements and the stresses across 

the boundary of the inclusion are the same for the inclusion and 

matrix, i. e., 

{u.i)t={u.\)z 
at r=a {7) 

{ O""rr' lf"vt>L ={ 5;,. • Ore >z 



www.manaraa.com

~-tl-

. .-4
 

I 
N

 

i 

11 



www.manaraa.com

12 

B. Mathematical preliminary. The problem has been rormulated in 

such a way that it can be solved in terms of series involving 

spherical harmonic functions with two variables. In this analysis, 

two types of solutions are used. They are, following Love's notation 

( 66), type W and type ¢ solutions. The tU type solution is given by 

(8) 

where UJ~is a homogeneous solid harmonic of degree n. This satisfies 

the equation (5) provided that 

o(.,.. = - 2 3n+1-!£2n+l )JJ 
n+5 J/ 

The dilatation is 

The type solution is 

U·: ~ .... ,.....,... ;.. (9) 

where ¢ ... is any spherical solid harmonic of degree n. The dilatation 

vanishes for this solution. 

Since the problem is axisymmetric , the solution is independent of 

angle ¥and we may use spherical coordinates with rand 9 only. 

Changing the cartesian coordinates used in equations {8) and (9) into 

spherical coordinates, we have, 

u r = r 2 aw.,. + oC r W 
ar "" ~ 

ue =raw., ae 

ror w type solutions, and 

{10) 
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Uy= ar 

!~ 
rae 

£or ¢ type solutions. 

The formulas £or the strains ares 

E - aur rr- ar 

Ey.,= ~-En- Eoe =:!!!'-+.!!!.cote 
r r 

E. ,..= 1 aur + r..2..(!!.!.) E .. 'IL= c. .... r = 0 
~.. r a e ar r • "'r t: r 

The general £ormulas £or the stress-strain relations ares 

O""rr • O'"ee• <J11¥'= 2)A [ 1~p A+ (Err•fu,f'¥11)] 

£Jre = }J. Ere • o;'f = G;r = 0 

Since the dilatation A vanishes for the¢ type solutions, the 

13 

(11) 

( 12) 

(13) 

stresses can be simply related to ¢ :functions directly. By combining 

(11) and (12) and substituting results in equation (13), we haves 

a'm 
O"'tr= ?p~ ar 

( 1 ;/0 1 a"' ) (}jee = 2 .u - ~ + - ~ '/ r 2 aa r ar 

<>w= - ( iJ,r + oea) 

~e = 2f: ( ; ~ ) • q;~ = a; r = 0 

(14) 

c. Mathematical form o£ solutions. The problem essentially is 

solving a Laplace equation in spherical £orm. When the solutions are 

independent or ,, the general solution or this equation is known 
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to be (46) 
CoO .,..,. 

w, ¢ =2:-=:r.,. P.,.,(cos e) + L r-Cn+t) Pt!cose) (15) 
'1'\=-0 ,.. ... o 

where., P'\1 (cos e) is the Legendre polynomial of nth degree in terms of 

cos 9. The terms P.., (cos 6) are also called "zonal" harmonics, because 

the curves on the surface of a unit sphere along which such functions 

vanish are parallel to the equator of the surface, thus dividing the 

surface into zones. For a clear understanding of further development 

of stress solutions, a few zonal harmonics are set forth explicitly: 

P0 = 1 P1 = cos e 

Pz. - t<J cosz. e - 1) P = ·H5 cos"' e - 3 cos e > 

Solutions in terms of harmonics of positive degrees are used in 

problems relating to a body of finite size, and those of negative 

degrees in problems relating to a body with a smaJ.l spherical cavity 

at the origin. We note that both sets of solutions are applicable to 

the matrix region. Since the problem is symmetric about z-axis and 

about the equator plane, it is easily seen that odd-numbered solutions 

may not be usable due to the term cos 2B in boundary conditions. With 

these facts considered, we choose following sets of equations: 

a) ¢z and ~0 to account for the constant stress parts in region 

1 (matrix) and region 2 (inclusion); W0 for hydrostatic stresses 

and ¢ 2 for non-hydrostatic stress parts; 

b) tJz. to satisfy the boundary conditions for region 2 and outer 

boundary conditions of region 1 ; 

c) w_ 3 to take care of the inner boundary of region 1; 

d) 1'1.. and ,( to meet the effect of the singularity in region 1; 
~-· >"'-3 

~ 1 for purely radial and y/_ 3 for pure shear part of stresses; 

where subscripts of GJ and ¢ refer to the power of r. 
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Multiplying each function with an arbitrary constant and 

superposing the resu1ting displacements and stresses, we find the 

following set of equations (16) for region 1s 

-1 __1_ r 271., J.V, ~ 1 
ur =;&At- 4r4 Bs + 2 Ct.---;::;- rDs + 7'\s Ft + ~ ra G1 

+ ( .!!! B + ~c - 2JJs. r 2 F - 1Xs _!_ G ) cos 281 rs 1 .J t .As 1 ]\7 r3 1 ~ 

0';8 = f 1 ( !~ B1 - JC1 - ~~7 r2 F.t - ~; r\ G1 ) sin 26 

and for region 2, equations (17)a 

15 

u r A 2 Gs rB + 3..Va r 3 C + ( J rA + 2.Jlz r 3 C ) cos 2 8 
v = 2 z. - ea. z. e ~ z 2 z e, 2 

<f;r = )l2 [ A1 - 4~4 B - ~ r&Cz + ( JAz.- 2:: r" Cz ) cos 29] 

lfee = fl.,. [ Az - 4~4 B - 1'i~a rl C.z - ( JA.,. + 219~•or'C" ) cos 2 s] 

O"y,_= tA [ -2A2 - 4 e4 B - .l.fu• r 2 C2 - 2!! r 2 Ca cos 281 
rz 9z 9.3 eJ ~ 
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where, 

P., = 1 - 2 ..v. e, = 1 - 2 1/"L 

.>..z.= 5 - 4.v. &2 = 5 - 4.Vz 

A3 = 7 - 4J), e3= 7 - 4 .).)l. 

.1\4- = 1 + », e.= 1 + ).)~. 

>..s = 5 - .JJ, es= 5 - Vz 

.A"= 7 + 11.J), a,= 7 + 11).11 

/\, = 7 + 2.J), 97 = 7 + 2.Vz 

J\.'1= 7 + 5 ;J, ei = 7 + 5 J/2 

"" = 7 - 10 v. eq = 7 - 10V2 

:>. .. o= 2 - JJ, e.o= 2 - Vz 

i'l.u= 7 + .J.), e.,= 7 + »z 

If the deformed cube was composed entirely of material 1 and 

elastic and homogeneous, the displacements and stresses on a spherical 

surface of radius a would be, 

Ur = ~da [< 1 -..V,) + ( 1 +.v'1 ) cos 2e] 

u e = - i: ( 1 + .V,} cos 29 

to- E, Wo ( 1 2 e } vrr = -zcr- + COS (18} 

0: - E*'wo sin 2e re = 2d 

!Jijp = ~~ = 0 

The condition of uniform displacement, equation (18}, is 

superposed to the equation (16) for region 1. Using boundary 

conditions ( 6) and ( 7) , we obtain a set of nine equations from which 
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the constants are determined. The three constants A1 • Dt, and B1 are 

obtained independently from others. 

The remaining six constants may be obtained by solving the six 

simultaneous equations. 

where, 

Up = tf d1 w0 [{ a4 d" (d3 Xs.- 'A.s93eq{)la-,P• )a3 ) (2 :A, X, X4+3t1.~XzX:J )-3:>.~ 83 Bq 

*(p .. - p,)(d5 X,- $1 a5 X2.)X3) (i\,z.a1 d1 (2J\, X, ~+3 e,x2X3)- ~3:>..4C:he,{fl&-)-l•) 

a 2 (2 At X I X4+3 eJ.xa x., )('A,z.d3 x,- ),3i\4 e3a.{;lz.-)A• )a3) -3 A; A4 63 Gq~z.-}I•) ( 

d2.X,- fd3a5 Xz. )x3)] 

Lo = [ { a7 (5-" 1 +3)(2 Ar X, X ... +3 EhXzX3)-(3 :Aa+2~, .Ac:,)) l2 ~,X, +3 Ale3(Gq()41 -

4_).1, )+15 <r"_ty) x3J ~a+ d2 (2 .A.x, x ... +J e1x2.x3)(d3 X1- )..!> ~~~<pL-p,)a •)-

3 >.i 9 3 8-q(_)A .. - p,)(ds X,- e3a5 X a. )x~l-3d"'"( &1 d(2 .A,X ,X4+3 eJX2X.3)- /'1 3 e 3 9q( 

),(2.-.f'• )(3~3 +2'>., A<t)X~~3 (2 /\,X, X..+363 Xz.X3){a' X,- A3e3 (eq()Jz.+)A, )+ 

15<>_0,';> d'l- A,(rf x, -I'J,a5 x,) I 5 A,X, +3 A, e.( s,()t.4,M· )+15 <f:J!>)X ·ll 
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F, =[i\~ 859ctX3(_p,-pz)a5 (w0~ +JdCd-X3d{5AtXI +)l\363 (91(p,-4jJ.)+156i)Jt) }a,]/ a., d(2A,.X:I~+383XzX_,) 

Gt=[ )..3 839,.a5 <_p,-pz)(w(Ji\4 -3C1d)-3 93d(a7 X2F1 +i\5X5 B, )] I JX1a'd 

A. _ WoA4 + 9zPt+48,p, B + C + i\s9#&-A78sp, a, F 
z.- 3d (e7-e,),.u,a5 L 1 (81-eJ)>-~t ' 

C = Woi\i + ~ + £.!.. + Ft + S!.!, • !!_ 
t )azd aT az. as at 

where, 

X1 = 93 9q(A,flt -~p,) - 9 Gi 92 .Pz 

X2 = 6 <rz A'\)Jz. + 9" (i\:sp1 - A7p,) 

x5 = e,f, + 4 9qJJ, 

x. = i\1 9~f't-i\v9ct)A• 

Xs = 8q{p1-4fi,) + 15 ~)-Az. 

/\,, = (J- ()j 

... 
()) 



www.manaraa.com

19 

The calculation of constants, thus the stresses, is virtually 

impossible to do by hand. Therefore it is necessary to use a digital 

computer. The variations of constants with o( (= a/d), (3 (= Er./Et), and 

r (= .JJz/1), ) are shown in Figures 2 through 6, for particular cases. 

It is seen that all constants, except A2 and B2, converge to zero as 

(3 becoaes zero or o{ approaches one. This means that when c< and (3 

become such values, i.e. , when the element is homogeneous, the stresses 

are constant and the displacements are in linear relationship with the 

radial distance. Computation by digital computer proved that the 

boundary conditions are also satisfied. This assures that the fore­

going solutions are correct. It is interesting to note that the values 

change almost linearly wi.th respect to 0' (Figures 5 arxi 6). 

D. Discussion on boundary conditions. In obtaining the 

theoretical solutions, it was assumed that the outer boundary of the 

spherical composite element will displace:-:as if it were of a 

homogeneous material that has the properties of aver-all composite 

(equation (6)). Clearly, this is true when 0'= 1, in vi.ew or the fact 

that the .v is the only factor governing the boundary equations, For 

r, 1' however' it is not known if the assumption is correct. 

As will be discussed later (Chapter IV) in detail, the value of 

effective Poisson • s ratio lies between values of .JJ, and ;.lz. The 

rigorous analysis does not give exact values or .J) but only bounds of 

P , which lie in the range between JJ, and .V.~. · 

Using the average value of these bounds for JJ may be practical 

when the gap between the bounds is narrow, but it may be very 
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incorrect, when the gap is wide. It is conceivable, however, that .V1 

will have more effect than Y2 in actual displacement, as the boundary 

lies within material 1. It was found through comparison with finite 

element solutions that the effective .JJ prescribes the actual boundary 

conditions very closely (Appendix B). The solutions describe the 

conditions for porous rock when ~ approaches zero. 

The comparisons of stresses with finite element solutions for 

tX. = 5/8, with different f and ¥'' s are shown in Appendix A. All 

theoretical values seem to agree very well with those of finite 

element solutions, although the boundary conditions are somewhat 

different. It should be ~emembered that the finite element solutions 

are very rough approximations because of the small number of elements 

used in analysis, especially along the boundary (45). 

E. Results of stress solutions. As expected, stress 

concentrations exist along the boundaries of inclusions. This affirms 

the common belief that the grain boundaries in rock are planes of 

weakness. Figures 7 through 10 show some results from the stress 

solutions for matrix region. The largest maximum principal stresses 

(max. ~ ) shown, tension being positive, are that occur at the grain 

boundaries due to the effective unit stress Do· Figure 10 shows the 

ratio of the maximum compressive stress (6C) on the grain boundary 

to the maximum tensile stress(~) also on the grain boundary. 

Whether the material breaks by maximum stress, maximum shear 

stress, or maximum extension stress, may depend on the type of material. 

But it is clear that such failure will always be initiated at the grain 

boundaries. The three principal stresses, maximum stress difference, 
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and induced stresses in principal directions for several different 

values of o(, (3, and fare listed in Appendix B. 

26 

The solutions also indicate that the principal stresses at points 

just inside and just outside the grain boundaries are different. This 

may explain why the grains breat in some rocks under load even when 

the load is not sufficiently great to cause the failure in matri.x 

region. 
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CHAPTER III 

F AlLURE CRITF.RIA OF GRANULAR ROCK 

There are many theories describing the conditions of failure of 

materials under mechanical load. For example, Jaeger (54), lists 

eight such theories. Most of these theories were developed for 

ductile materials such as metals and plastics. It should be pointed 

out that a failure criterion does not necessarily describe the actual 

failure mechanism, but that it only describes the condition under 

which failure may take place most of the time • 

.Among the proposed theories, only Coulomb-Navier and Mohr's 

theories have been found to be "reasonably valid" for rock on the 

basis of experimental studies (47). The Griffith's theory of brittle 

failure has become quite popular in the rock mechanics field in recent 

years. The main reason for this is that it is the first theory that 

provides a model for brittle material. The theory was developed for 

glass, based on the stress concentration around a micro crack, and has 

been proven to be valid for isotropic materials such as glass (48). 

Since all rocks have cracks (16, 49) to varying degrees, the Griffith 

theory should be applicable to rocks. However, direct application of 

this theory to rock has not been very successful ( 16, 49). A more 

obvious defect (51) of the theory is that it indicates that the ratio 

of uniaxial compressive strength to tensile strength is exactly eight, 

whereas it is well known that the ratio sometimes exceeds 100 in rocks. 

Otherwise, it gives a semiquantitative description of many common 

phenomena of rock (49). Hence, many attempts were made to remove 



www.manaraa.com

this "defect" through modifications, but it may be that the defect was 

in the application, not in the original theory. 

McClintock and Walsh (52) hypothesized that the cracks close up 

under pressure, developing friction on the friction surfaces, and Paul 

and Gangal (51) developed an idea of fracture hardening. However, 

experimental studies show that the coefficient of friction at the 

crack surface has to be very high (up to twice of actual value) in 

order that the compressive strengths exceed ten times the tensile 

strength (53). The hardening of fracture is very doubtful in brittle 

materials, especially at a relatively low pressure of uniaxial 

compression. 

Again we must remember that the original Griffith theory was 

developed for glass, a homogeneous and isotropic material. Despite 

the fundamental fact that most rocks are notably inhomogeneous, all 

aforementioned theory neglected this property of rock. In fact, no 

study of effect of inhomogeneity under stress conditions is known to 

have been made to date (49). 

The solutions from previous chapters provide a failure criteria 

for composites of ideally isotropic materials, i.e., for heterogeneous 

material without micro cracks. If we combine the Griffith theory and 

the effect of heterogeneity, it will describe the failure of granular 

rock better than any single existing theory. 

It is proposed here that the Griffith characteristics be taken as 

intrinsic properties of each individual material composing the 

inclusion and matrix, and that the new failure criterion based on the 

effect of heterogeneity be used for rocks, especially for granular 

rocks, This new criterion is extremely difficult to put into a 
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mathematical form. However, the concept is quite simple and may be 

expressed as 

of= IT (6;,, E,, .JJ., S 1 , 0(, ~' f', cf, G(r)) 

where S1 is the strength of the matrix, cf is the strength ratio 

between the inclusion and matrix, and G(r} is the stress change due 

to Griffith cracks. 

This criteria gives explanations to many questions heretofore 

unanswered. 

33 

a} The ratio of compressive and tensile strength of rock depends 

on the properties and their ratios of individual. minerals 

composing the rock. For instance, the ratio may be exactly eight 

for individual minerals, but because of the heterogeneity, for 

rock with f = 3, fl= 2, and o( = • 75, the stress ratio is about 5, 

which raises the strength ratio of the particular rock to 40. 

Thus the strength ratio of uniaxial loadings is theoretically 

explained. 

b) The frequent failures along the grain boundaries have lead to 

the assumption that the micro cracks concentrate along such 

bowxiaries. According to the new criterion, high stress 

concentrations along the boundar,y, given by the stress solutions, 

are re~ responsible for such breakages. 

c} This theory is capable of predicting whether the type of 

failure of a particular rock will be intergranular or intra­

granular. The principal stresses (maximum), ~, are different 

for inside and outside the grain boundary. Therefore, when 

the strength ratio is exceeded by the ratio of stress 



www.manaraa.com

(61)inside/(6l)0 utside, the failure will be transgranular, and vice 

versa. 

It is well-known fact that rock is weaker when wet. Jaeger (54) 

suggested the use of effective stress for saturated rocks, i.e., to 

use o- -r instead of (), where p is pore water pressure. But the 

experimental results did not confirm this very well, especially for 

rocks with small porosities (49). The stress solutions indicate that 

the stress concentration factors are very high when the inclusion is 

liquid. The stresses for water inclusions are obtained qy setting 

).)z = .5 and E~ = .300,000 psi (55). For example, for (3 = .10, ;/, = .1, 

and~= .95, the maximum concentration factor is about 2.3.0, whereas 

it is about 8.5 when p = .001, which approximates dry porous material. 

Thus the proposed theory also gives the most logical explanation to 

failure of saturated rocks. These numbers are based on the assumption 

that the pore water is completely confined within each pore. Although 

a direct application may not be possible because of seepage of water 

in real rock, the theoretical values can be inferred to such problems. 

One disadvantage in using this theory is the complexity of the 

expressions. Despite this, the theory provides a near perfect model 

for brittle, granular rocks in view of the facts that: a) it 

eliminates most assumptions used in other theories, b) it makes it 

possible to explain most phenomena that were not possible with other 

theories, and c) it is the most logical from the mathematical point 

o:f view. 

A direct application here m~ not be feasible as in the case with 

the Griffith theory, because the theory gives only the conditions :for 
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"initial" .failures. Some cracks due to initial .failure may not lead to 

a complete .failure, depending on the properties of the material. 

Figure 1 shows the variation o.f the strength o.f porous rock with 

respect to its porosity .for j)i = • 3. The ratios o.f compressive 

strengths to that at zero porosity are reciprocals o.f the ratio o.f 

maximum tensile stress to that .for~= .15, assuming here that the 

compressive .failure is caused by these tensile stresses. When a dry 

porous rock is compressed (extended), the maximum compressive (tensile) 

stress occurs outside the outer spherical boundary, because the 

vertical sti.f.fness is higher near the edges o.f the elemental cube. 

Thus the absolute maximum stresses .for void inclusions cannot be .found 

with the theoretical solutions. The ordinate on the tensile strength 

curve is the ratio o.f maximum tensile stress at e = 90 degrees to that 

occuring anywhere in the matrix, when the element is in tension. 

Figure 2 shows the theoretical compressive to tensile strength 

ratio with respect to porosity. This was obtained by multiplying 

eight (.from Gri.f.fith theory) to the ratio of maximum tensile stress 

developed in compression to the apparent stress. The apparent stress, 

<>, was calculated by multiplying effective (apparent) strain and 

effective Young's modulus, i.e., O= E w0 /d. Porosity(~) can be 

calculated .from ll - o( relation "'! = Tf... rX.3/6. 

Figure 3 shows the results .from the Brazilian test (indirect 

tensile test) on pressure-sintered NiO, taken .from reference 75. In 

plotting the experimental values, the original strength (i.e., tensile 

strength when 1 = 0) was assumed to be 22,000 psi. 

Results o.f the unconfined (uniaxial) compression test with Bunter 

sandstone are shown in Figure 4, with the theoretical curve for 
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compression. The data was obtained from reference 45. The zero 

porosity strength in this case was assumed to be 14,300 psi. 

A series of tests were made with artificial porous rocks made of 

plaster. The descriptions and results of the tests are in Appendix D. 

The results are compared with theoretical curves in Figures 2, 5, 6, 

and 7. 

All the comparisons made above indicate that the theory agrees 

with the experiments very well. By superposition of the solutions, 

the theory may be extended to th~ee dimensional problems. For this 

matter, an extensive experimental study is required. 

The case with solid inclusions shows some interesting results 

(see Appendix B). The tensile stress developed in matrix, when the 

composite is in compression, decreases as ~ increases. This indicates 

that, if the material breaks in tension rather than shear, the 

compressive strength increases with inclusion density, assuming that 

the inclusions are much stronger than the matrix. The tensile 

strength, on the other hand, decreases with increasing inclusion 

density. Thus .. reinforcement" of material by adding stronger 

inclusions to it m~ apply only to compressive strength. 

The increase in strength with inclusions has been shown in many 

experimental studies with metals (Reference 56, for example). No such 

studies have been made with brittle materials. Tests with artificial 

rocks, such as concrete, show that the strength decreases with increasing 

density of the inclusions (59). In order to compare such tests with 

the theory, not only the physical properties of individual constituents 

but also the porosity of matrix must be known (assuming no porosity for 
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inclusions). For example, 10 per cent porosity or concrete is 

equivalent to about 50 per cent porosity or matrix when the inclusion­

to-matrix volume ratio is about eight. The strength of the matrix 

should be reduced accordingly, in calculating the theoretical strength 

of the composite. 
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CHAPTER IV 

ELASTIC MODULI OF COMPOSITE 

In the stress solutions obtained in Chapter II, we used elastic 

moduli of" matrix Et., of" inclusion E 2 , and of composite material E. 

4.5 

We shall now look into the relations between these moduli in order to 

complete the investigation. 

As mentioned in the literature review, very extensive 

investigations have been made on this subject. The most recent 

studies on this. can be round in references 60 and 61. Simple and 

practical solutions have been proposed by a few authors. Two of" 

these solutions together with the theoretical bounds for a two-phase 

composite are reviewed and a new approach to this problem is 

introduced. These are then compared with the data available in 

the literature and those obtained :from a series of' tests with 

artif"icial rocks. 

A. Theoretical bounds. The lower bound is obtained by using 

the principle of least work in the theory of" elasticity. This 

principle implies that if' the tractions are completely prescribed 

over the surf'ace of a body, the actual strain energy generated in the 

body is not greater than the strain energy calculated f"rom the state 

of stress, i.e., 

where E(O':j) is a function relating G.:j to G.::j. It we assume that the 

stress in the composite element is uniform. and unidirectional, 
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there.fore, 

(1) 

where .f is the volume ratio o.f matrix. Equation ( 1) is the same as the 

.formula .first used by Reuss (1929) in obtaining apparent moduli o.f 

heterogeneous aggregates (61). 

The upper bound is found when the material lies in a uniform 

strain .field. The theorem o.f minimum potential energy states that 

when the displacement components are completely specified on the 

sur.face o.f a body, the strain energy generated within the body due to 

the de.formation does not exceed that calculated .from the state o.f 

strain. Hence, 

~ E.c) E..:j V ~ ~Jv E.c.j E..:j E(o--'j) dV 

I:r the strain is uniform throughout the material ( 12 ) , 

fu.! E ·· E · · V = !. E ·- E ·-1 E ( 1-JI-4Jim+2m2 
) dV 2 "-J "') 2 "') "'.J 1-JI-2J12 

v 
=!E .. E .. V [ (1-.P,-4.V,m+2mz )fE, + <t-.U.t-4~m+2mz) (1-f) E 1 

2 "'J 4 ) ( 1-.V. -2 P 1 a ) ( 1-JJ.-2 .Jia1 ) I. 

The value o:r m that minimi.zes the right hand side is found to be, 

(2) 

This gives the lowest upper bound of modulus Eu, 

Eu = ...}.;;.~,__;~::;;.;.::;,;;;..-'T.;;;;.;.. + <t-~-4~m+2ma) (1-£) Ez. 
(1+4)( 1-2J.Ia J (3) 

When .V, =U.z, Eu becomes 

Eu = fE1 + (1 - f ) E z. (4) 
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which is the formula derived qy Voigt in 1910 (61). 

The elastic moduli of a composite with cylindrical inclusions 

with uniform cross section is equal to Eu when the load is applied in 

the direction normal to the cross section and is equal to EL when the 

load is applied parallel to the cross section. Kumazawa. (61) observed, 

however, that under high-pressure static compression, the behavior 

of rook is better simulated by EL. rather than Eu. 

B. Paul's approximation .formul.a. Paul ( 1960) used a unit cube 

containing one inclusion as a. representative element (Figure 1). 

Assuming that the cross section originally normal to the axis of 

applied force remain normal, and that the strain E .i. is uni.form over 

such a cross section, the total force on the section can be expressed 

as 

F = E 1 E4A1 + EaE.:Az = E.:( E 1 + (Ez.-Et) Az) 

The total deformation J of the cube is 

I f' J = j E . (x)dx = F 
D A. " 

dx 
Er +(Ea -E t )Az 

but since E = F / J , 

1 J' dx 
E = ~ E.+(Ez-E.)Az(x) 

(5) 

where the .function A2(x) is dependent on the shape of the inclusion. 

For a cubic shape inclusion, equation (5) yields; 
Z/3 

E _ E,+(Ea-Et )~1-f) 
Et- E1+(E2-Ed(1-f o/J{1-(1-.t)f3} 

(6) 

The assumption of sectionally uni.form strain is actually closer to 

the assumption o.f no~uni.form strain than that of uniform strain in 

z-direction. The assumption used in this .formula is , in reality, a 
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rough approximation of uniform stress in the media. Thus, in most 

cases, the formula is merely an improvement of the upper bound. 

c. Greszczuk's expression. Assuming the unit element to be as 

shown in Figure 2, and the strain to be uniform in z-direction, the 

effective or apparent Poisson's ratio becomes, 

(7) 

The volume change of an elastic solid in hydrostatic stress field is 

6V (8) 

but 

(9) 

where 

< 1-2 .v.) f U: . 
E AL 

(10) 

< 1-2 JJ:a) ( 1-f) ().. 
E "'-.4 

Combining equations (7) through (10) and solving for E, we obtain: 

E 
E1= 

(11) 

The effective shear modulus is determined b,y using effective E and 

).), i.e., 

E 
}J- = 2 ( 1+..V) 

(11a) 

The unit element indicates the model to be of an anisotropic 

nature, the inclusion density in z-direction being greater than that 

in lateral direction. Hence this equation gives somewhat higher values 

of E than actual E when the concentration of the inclusion is small, 

and it gives the lower values when concentration is high. 
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It should be also noted that because the formula has been derived 

from )1- L::N relation, the effective Young's modulus is highly sensitive 

to the ratio of ~/.1J1 • As will be shown later, this formula gives 

good fit th experimental data only when Yz/JJ, is very small or very 

large. Since the Poisson's ratio of most rock constituent minerals 

are fairly constant within the range of .2 to .3 (62), this formula 

may not be the best to use for rocks. 

D. A new approach. Since the theoretical work on the subject of 

this chapter has been carried out to almost beyond any more improvement, 

our prime objective remains to find a formula for effective elastic 

moduli of composite material. The derivation of this formula should 

be based on theoretically reasonable assumptions, and such formula 

should, a) be simple and practical to use, and b) fit experimental data 

better for a wider range of property variation than other formulas. 

In order to simulate a quasi-isotropic condition, we shall use a 

unit element similar to Paul's (Figure J). As in the case of stress 

problem, we will assume that the boundaries of elements will undergo 

uniform displacement. This implies neither uniform stress nor uniform 

strain. However, it enables us to use sectionally uniform strain in 

the direction of load for a uni-axial load field. We devide the 

element into columns with a very small cross-sectional area. The 

strain in z-direction within a column can be assumed to be uniform, 

except those containing parts of the inclusion. If we replace these 

heterogeneous colQmDs with homogeneous ones that have equivalent 

elastic properties, then we will be able to use the theorem of minimum 

potential energy for the system. 
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In order to .find such equivalent elastic modulus, we assume that 

the stress is constant throughout individual heterogeneous columns. 

From the principle of least work, 

where Ee.i. is equivalent modulus of individual column. The equivalent 

modulus of the column containing the entire inclusion is obtained by 

averaging over the area, 

Ee.;.A .. 
A· ..... 

(12) 

The effective modulus of the element becomes then, 

E = ( E,A, + EeA2. )/( A, + Az ) (13) 

Equation (13) has been obtained through utilizing both theorems 

used in deriving the bounds, and can be used for any shape of 

inclusion. However, we can readily perceive that this formula will fit 

best if the inclusion is granular, i.e., i.f the three dimensions of 

the inclusion are about the same. 

For a composite with spherical inclusions, equation (12) becomes, 

Ee -= E, 
2(3 (3 2f3 

o(z(p-1)i log [J-(1-(3)0( + oc(l-_13) 
(14) 

and, (15) 

For cubic inclusions, 

Ee f3 
E7 = {3+(1-f3) 0( 

For cavities, E z is taken to be zero, hence Ee=O. This is 
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reasonable since the deformation of rock containing a spherical void 

is the same as that containing a crack normal to the load (63). 

Equation (13) becomes, for void inclusions (spherical), 

E = Es. (1- ..2._YI) 
Jlo(. l 

where 'l'j denotes porosity. 

(16) 

The effective Poisson's ratio is obtained simply by combining 

E, E1, and Ez. From equations (8), (9) and (10), 

1-E2J) = 1-Wt:f + 1-2~( 1-f) 
Bt E2 

Hence, 

)} = ~ { 1 _ (1-2 v,)f/3 

When E = E 1 = Ez 

v = £;.1.+(1-f)J.{ 

( 1-2 JJ.~)(1-r) E} 
Ez 

The effective shear modulus can be found b,y using equation (11a). 

E. Comparison with available experimental data. The values 

calculated from equation (15), assuming spherical inclusions, were 

(17) 

(18) 

compared to the experimental results in order to examine the accuracy 

of the expression. Figure 4 shows a comparison of predicted E to 

experimental data obtained by Nishimatzu and Gurland (56) for an 

alloy s,ystem of tungsten carbide (inclusion) and cobalt (matrix). 

The following values are taken from reference 56: 

E 1 = 30 X 106 psi 

E 1 = 102 x 106 psi 

.).11 =0. 3 

J/,.=0.22 
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As is readily seen, the formula correlates the experimental data 

quite well. 

In Fi.gures 5 to 9, the formulas are com·pared to the data by 

Mandel and Dantu (40). The material used for this experiment was an 

epoxy type resin called Araldite with five different materials £or 

inclusions. The average values for matrix are Ei=.45x10G psi and 

~i=.40. The elastic properties of the inclusions are (40), 

Inclusions Ez .v~ 

Steel balls 31.2 X 10' psi O.JQ 

Diorite 14.6 X 10' psi 0.20 

Limestone 11.2 X 10' psi 0.25 

Sandstone 8.3 X 106 psi 0.25 

Lead balls 3.3 X 10' psi o.4o 

In general, the equation (15) seems to agree to the experiMental 

data better than the other two. The most remarkable example is seen 

in Figure 9. 

A further verification of the appro~ation formula is sho~ 

in Figure 10. The data was obtained from reference 65, where the 

experiments were made on a tungsten alloy with copper. The elastic 

moduli of tungsten and copper were 59.0 x 106 psi and 17.56 x 10" psi, 

respectively. 

The main concern of this paper is the behavior of granular rocks. 

Artificial rocks made of plaster and water were used in the experimental 

verification of the theory since their properties can be more easily 

controlled than with real rocks. The types of plaster used and test 

results are shown in Appendix C. 
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The ratio o:f measured Young's modulus to E 1 , assuming E 1 to be 

2 • .5 x 10" psi, is plot ted against porosity in Figure 11. The 

predicted values by equation (16) agree remarkably well with t.he data 

in view o:f the assumptions made above. It was observed that when the 

porosity exceeds 40 per cent, the plaster specimens behaved quite 

non-elastically. This may be the probable cause o:f lower values o:f 

experimental data than those predicted in high porosity ranges. 



www.manaraa.com

1.0 

E/El I '@ 0 Hydrocal 

){ 

X Hydro stone 
,8 ~ '\ )( 

.6 G 
)(. 

.4 

>( 0', 
0 ........ 

' 

,2 

G X 

10 20 30 40 50 % ~ 
porosity 

figure 4-11, Young's moduli of porous materials ?; 



www.manaraa.com

CHAPTER V 

SUMHA..R.Y, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE INVESTIGATIONS 

Analytical solutions for stresses in elastic composites with 

spherical inclusions have been obtained on the basis of mathematical 

theory of elasticity. The basic assumptions used were that indiVidual 

material composing the composites is homogeneous, isotropic, and 

perfectly elastic, and that the boundaries of representative elements 

deform uniformly. 

The solutions indicate that the failure criteria of composite 

elastic materials are complicated functions of 1.1, E 1 , S 1 , o{, (3• (', 

and d. Some significant results are as follows: 

a) when the composite is extended (compressed), the maximum 

tensile (compressive) stress on the grain boundary increases as 

cJ..., (3• and t' increase; 

b) when compressed, the maximum tensile stress and maximum 

extension decrease very slowly with increasing o( and r. but 

increase somewhat as ~ increases; 

c) for void inclusions, the tensile stress developed due to 

compressive load increases as ~ increases; 

d) the maximum shear stress varies similarly to the maximum 

principal stress. 

Combining these solutions with Griffith's microcrack theory 

provides a new failure criteria for brittle granular rocks. With this 

theory, most phenomena in failure of brittle rock that were not 

possible with other theories can be easily explained without 

assumptions, such as friction on crack surfaces or hardening of cracks. 
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For example: 

a) The ratio of compressive to tensile strength is not exactly 

eight, but is a function of' the properties and their ratios of' 

individual minerals composing the rock. It may vary from less 

than eight to greater than 100. 

b) High stress concentrations along the grain boundaries are 

responsible for frequent failures along the grain boundaries. 

This eliminates the assumption that micro cracks concentrate 

along such boundaries to explain the failure. 

c) The inter-granular or intra-granular failures are determined 

by the physical properties of' the composite. 

d) The stress rises very rapidly as f increases. This may explain 

why rocks are weaker when wet. 

The theory also agrees with experimental data quite well. Thus 

the theory appears to provide a near perfect model for brittle and 

elastic granular rocks, from both the mathematical and experimental 

viewpoints. 

As part of' this thesis, approximation f'onnula for effective 

elastic moduli was obtained through combination of' two theorems from 

the theory of elastid.ty. From the comparisons with test results, the 

formula was proven to give better approximation than other formulas. 

A more extensive experimental study with granular rocks is 

suggested for further verifications of the validity of' the theories 

obtained in this paper. ~ension of' the theory into three dimensional 

failure criteria requires a verification. This may be done by 

comparing tri-axial test results with the solutions superposed in three 

directions. The superposition may be made easier by direct use of' the 
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digital computer. Rock usually becomes plastic at a very high 

confining pressure. Hence there should be certain limits to the 

applicability of the theory. The three dimensional criteria may be 

used to find such limits for rocks. 

By applying different boundary conditions, stresses in an 

anisotropic material can be analysed. This may be done by using a 

parallelepiped instead of cubic element. In this case, however, the 

stress functions might be different from those used here, depending 

on the boundary displacement function. 

67 

Some rocks contain cracks (macro size) along the grain boundaries 

due to pre-existing stresses. Analysis of such composites may be made 

by assuming imperfect bonding or no bonding at all between the grain 

and matrix. The resulting solutions might give a better description 

of real granular rocks. 
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APPENDIX A 

COHPARISON WITH SOLUTIONS BY l"INITE SLEHENT TECHNIQUE 

The theoretical solutions are compared to the solutions obtained 

by means of finite element technique. The composite cube would have 

been an ideal model to compare displacements of spherical boundaries 

to those obtained by theoretical solutions, but because the computer 

program £or three dimensional analysis was not available, a cylinder 

containing a spherical inclusion was used as a model. One disadvantage 

of the finite element method is that it does not give stresses at the 

boundary. Thus it requires finer meshes along the boundaries to 

obtain better approximations. Due to limited computer time allowed, 

however, a very simple mesh (Figure 1) 1.,as used. 

All solutions are £or~= 5/8. The displacements o£ outer and 

grain boundaries are also compared. For the purpose of comparison, 

the stresses obtained from theoretical solutions were converted to 

those in the cylindrical coordinate system, and the displacements £rom 

finite element analysis were converted to those in the spherical 

coordinate system. All displacements and stresses are calculated at 

the points on a vertical plane containing the center of the inclusion. 
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F'i~re A-14. Shear stresses for =10 and =1 
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APPEND:U: B 

STRESSES ALONG THE GHAIN BOUNDARY 

Principal stresses, maximum stress differences, and induced 

stresses in principal directions in matrix are listed here for 

reference. All stresses were calculated on the basis of E1 = 100,000 

psi and ..l1= .1, and then divided by the apparent stress. The apparent 

stresses were calculated from (]" = w o E/d and E was calculated from 

equation 4-15 when possible. Because of the truncation error by the 

computer, when~~ .75, the value of E becomes negative, depending on 

the value of ~· For such cases, E was calculated by using equation 

4-4. Values are listed for 6 ranging from 0 to 90 degrees in 1.5 

degree increments. 

The effective Poisson's ratio,~, was calculated from equation 

4-7, which gives the upper bound. Because of this, the calculated 

values may be somewhat higher than actual values. The constants for 

solutions were directly calculated by solving the 9 by 9 matrix with 

the Gaussian elimination method. The listed are in the order of Ol• 

(::"" ~ - "' ~ ,r and o:;e.. • The subscripts 1 , 2 , and 3 are uz ' v3 1 u,- u_, • ve1 • vez. • ., 

given in the order of the absolute magnitudes of stresses, and the 

subscript e denotes induced stress. 
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APPENDIX C 

RESULTS FROM TESTS WITH ARTIFICIAL ROCKS 

1. Materials and mixtures. Two types of plaster, Hydrocal B-11 

and Hydrostone (U. s. Gypsom Co.), were each mixed with water. The 

true specific gravities of Hydrocal and Hydrostone were found to be 

2.19 and 2.30, respectively. 

In order to give various porosities, different amounts of water 

were used and mechanical vibration was sometimes employed. The mix 

was poured into 2 •• inside diameter and 12" long oylindrica1 plastic 

tubes. The mix was hardened enough to be taken out of the mold in 

about two to five hours, depending on the mixture. Specimens thus 

made were air-dried and cured at room temperature for about thirty 

days, before they were ready to be tested. 

2. Tests made. All the strength tests were made with a Tinus-

Olsen testing machine of 120,000 lbs. capacity. 

a. Fl.exural strength test. The specimens were tested without 

cutting, in a center-point loading device with a span of .5". 

The edge of the upper plate was carefully lined with the center 

of the lower plate to minimize the effect of non-uniform shear 

in the specimen. All specimens were loaded at a rate of 400 

lbs/min. 

b. Uniaxial compressive strength test. About 4• from the top 

and bottom of 12" specimens were out off wi.th a diamond saw to 

obtain homogeneous specimens. The length of the specimen was 

about twice the diameter. The top and bottom faces were made 
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smooth and parallel to each other with a grinding machine 

within ;t.OOS". The specimen was then placed in the testing 

machine and loaded at a rate of 60 psi/sec. 

c. Uniaxial tensile stre;ngth test. '!he preparation of the 

specimen was the same as for the compressive test. The specimen 

was glued to the upper and lower platens with structural adhesive. 

The platens are connected to the loading plates with a pair of 

roller chains to prevent moment from developing in the specimen. 

The plates attached on upper and lower loading plates to hold 

the chains were designed so that the center line of specimen will 

lie within +0.020" from that of the loading machine (65). When 

the specimen broke at the ends very close to the platens, the 

results were discarded. The loading rate was 50 psi/sec. 

d. Brazilian (indirect tensile} test. Specimens for this test 

were cut off from the flexural test specimens after they failed. 

The lengths vary from 1" to 2 ". The loading rate was about 400 

to 500 lbs/min., depending on the specimens. 

e. Apparent :ps>rosi ty. All specimens tested were measured for 

the apparent porosities. '!he dry and wet weights of specimens 

were obtained by weighing specimens before and after immersing 

them in water for twenty four hours. 

f. Young's modulus. Wire type polyester strain gages (Tokyo 

Sokki Co.), t em. size, were attached to each sample with 

Eastmann 910 adhesive. All the values given here are initial 

moduli. 

lhe test results are listed on the following pages. The 
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95 

number of specimens tested for each mix is four unless indicated 

otherwise in the parenthesis after each value. The strengths 

shown are the averages of them. The symbols Sf, Sc, St, and Sb 

denote flexural, compressive, tensile, and indirect tensile 

strengths, respectively. 
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TABLE I, TESTS WITH HYDROCAL B-11 

No, Porosity E Sf Sc st 3:> 
~ 10 psi psi psi psi psi 

1 30.5 1.12 524 1291 188 201 

2 52.5 .25 (2) 2'74 (6) 333 (5) 85 (5) 15 (12) 

J 42.5 ,40 (2) ~2 (6) 642 (6) 150 (5) 140 (12) 

4 18,0 1.57 920 1875 410 40'4-

5 J,O 2,25 14~ 4896 60J 551 

6 J2,5 1.o6 579 1318 '5J7 2~ 

7 )6,0 .93 4~ 822 142 184 

8 29,0 1.20 627 1692 3>S 265 

'8.. 
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No. Porosity 
'f, 

1 .54.5 

2 41.0 

3 19.5 

4 18,0 

5 )0.0 

6 27.0 

7 5.5 

8 10.5 

TABLE II. TESTS WIT'.d HYDROSTONES 

E 
10 psi 

.25 (3) 

.50 {J) 

1.40 

1,60 

1.15 

1.18 (2) 

2,10 

2,00 

Sf 
psi 

124 (3) 

235 (3) 

991 

1071 

741 

715 (2) 

1~ 

1324 

Sc 
psi 

1.54 (3) 

805 (3) 

2381 

3196 

1218 

15)2 (2) 

~17 

2)00 

st 
psi 

51 (3) 

220 (3) 

)64 

504 

240 

258 (2) 

5'51 

4~ 

Sb 
psi 

150 (3) 

2)8 

4)2 

449 

244 (6) 

239 

524 

462 

'() 
-..J 
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,, .... 

.. 
~ 
~ 
~ 
~ 

, •• 2 

, ... 

I'• 1. 

r-'+. 

o( 
A, B, C1 D, E, FL 

.95 -0.7905E-04 a.6410E-04 -0.1990E-03 0.3806E-01 O.l535E-04 0.9?90F-04 

I • •' "• =tn J=tr-p, l!· ,, .,,t-!Jlt -u. 1'>9HE-::l}.3 _Jl....2868E-03 ___ Q.5041f~04 0.5Bl7E-0.4 

.5'5 -0.2380E-04 0.6~83F.-O~ -0.9361F.-04 O.l675E-03 0.4110E-04 0.2870E-04 

1 • ,... -u.....lll 9E-05 O. 91 98J:-Q6~Lct!tf!~_Jl ... _lt204E-04 .. O.l613E-04 0. B«HOE-05 

.15 -0.6158E-06 O.l274E-07 -0.2427~-05 0.2609f-05 O.l525E-05 0.7,49E-06 

,95 -0,8892F-04 0.6661E-04 -O.l924E-03 0.3323E~03H ... 0 .• 1595E~04 

I .75 -0.5411F.-04 0.2610F-04 -O.l520E-03 0.2295F.-03 0.523AE-04 

L__._s__s_ -0. 2557E-04 o. 6146E-05 -o. B6.8B.E~0.4 ... ~1230E-03 .. 0. 4211E-04 

.0. .. 9 6 5 5.E~....O.L 

0.6047E-04 

0.294lE-_M __ 

! .35 -0.7521E-05 0.8239~-06 -0.2779E-04 0.3198E-04 O.l621E-04 0.8955E-05 

• 1 5 -o. 6160E-n& a. 1 214E-01 -a. 2359E-05 o. 21goe-os ___j)_J523e-or:; 0.75.51 ~Jl6.._ 

~-~-9~ -c. qearr.::-o4 o.6qt4E-o4·--o-~-l~:;o-3 o.2A'39l:-03 

.75 -0.5989E-04 0,2726E-04 -O.l442E-03 O.l720f-O' 

o·~ 1655E-04 O.lfl02E~4J"-

0.5429E-04 0.6267E-~ 

-. 51!"1'5~-:_.,..o,_,. z~7P"!!3r!r3~E-;:70"rl4:--o7'r.,6:1!1tJrno-m9F~_ -~ol'1:5--::lor.-ae7r.or.t4ne~-~or4 ----nor-• ...,..7~a4n6~f!=--n-;o4~cl:4ll""JF04- -·0-loiH=lit-, 
.J5 -0.7623E-05 0.8281E-06 -0.2611E-04 0.2189E-04 O.l629E-04 0.9000E-O$ 

~--;1: 5 -o. 6t61t=n6 o .t275E-o7 -o~ 22891:-05 ll.l771f;.;;.-os~ o. r534E~o5 o."755~e-o6 

.~~ -O.l723E-Ol 0.8800f-04 -O.l166E-03 -Q.79SOF-04 O.llOlE-04 O.l275E-03 

• 75 -o. toze E-o 3 o. 3444E-o4 -o. 8577E-04 -o. 259oF-o3 o~-6859F-04- ·cr;..,-cn7E-o4 
~ 

.c;5 -0.4039E-04 O.~l28E-015 -0.2970E-04 -0.25~4E-03 0.5075E-04 0.3544E-04-· 

• ~ 5 ·- .;.;n-;m~ol)·-· o. f:t5Aqt=;.;n, -o.115r-~-o~-5"f61E":;.·04-· o. t68-9E-04 o;q:rJs-~ 
.t5 -0.6le;7f-1" O.l277f-07 -o.t1152E-05 -0.13731=-05 O.l533E-05 0.7567E·~- ~ 



www.manaraa.com

~ •• 10 

r • . 2 

I'• ·' 

r· 1. 

r. ,.. 

0( A, B, c, Ds. E, F, 

.95 -0.7?15E-04 0.5668E-04 -O.l795E-03 0.3608E-03 O.l387E-04 0.8229E-04 

~=-o4 -o. 1 41 oF=-o3 o. 212 ze-o3 o._tl56E~ .. o4 

.~ .• 55 -0.2095E-04 0.5481E-05 -0.809lE-04. 0.1_5 93-E-03. 0.3427E-04. 

35 -0.64">6E-05 0.6656E-06 -0. 2460E-O{t __ 11..3929E~O~L _.Q.l3lOE-04_ 

.15 -0.5~48E-06 O.l022E-07 -O.l986E-05 0.2375E-05 O.l235E-05 

. 0.5006E::-Jl4 ... 

0.2393E-04 

o.J23h_E~_os __ 

0.6054E-06 

I .95 -0.8046E-04 0.5918E-04 -O.l730E-03 ..0....3.D.B..0£::0.3 ..... Jl..L45.1E-04 .0.8594£=-fi!L 
I 
! .75 -0.4791E-04 0.2265F-04 -O.l333E-03 0.2117E-03 Q.4549E-04 0.5226E-04 

~ -o. Z224E-04 o. s655E- os -o;rmE:-:_04 ___ _O._ll3_5E~n3 __ o~ 3517E:-04 o.2469£~o-'t_ 

1.35 -0.6471E-05 0.6743E-06 -0.2307F-04 0.2896E-04 O.l326E-04 0.7330E-05. 

: .15 -O.S?BJF-06 O.JO]JE-07 -0.193JE-05 0.1937E-:05 Q.l2!t!tE.~----11 .. 6..107E-06 

,qr; -0.8848E;-u-zt o.6169E-04 -0.1664E-01----o~-2S4_l_t...;03 0.1514E-=04 0.8959E--04-

.75 -0.5236E-04 0.2360E-04 -O.l255E-03 O.l503E-03 0.4742E-04 0.5446E-04 

• 55 -o. 2'341E-o4 o.583oE-o5 -o.6773E-o4 o.6TI4£"-=Q'lto:·3646E:.o4·· <r;2545E-04 

.35 -0.6459E-05 Q,6827E-06 -0.2153E-04 O.l854E-04 O.l343E-04 0.7421E-05 

r.;-15 -0.5200E-06 o.to19F 07 -o.la52E-05 O.T493E-05 O~-f'-ltlE::.o~---O.-i6l57E-06-

.95 -O.l013E-O~ O.A036F-04 -O.ll74E-03 -0.2836E-03 0.2014E-04 O.ll69E-o3 

, • 75 -o. st; I Qf-04 o. 3o65 E-o4 -o .6720E-o4 -o. 391J8J:.:..o3-~-o.6203E -04- o. 7095E-Oit 
! 
! .55 -0.2022E-04 0.7107E-05 -O.l809E-04 -0.3134E-03 0.4453E-04 0.3106E-04 

,-~""1-.,- -0.4018E-05 o,738tE~U6-:;;;;U~-9778F-05 -.;_-0~66lOF;,;;~ ·o--;r-4~-04 0.80l"SE"~ 

i • 15 -0.2921E-06 O.IOBA~-07 -O.t408E-05 -0.2303E-05 O.l308E-05 0.6445F.-06 
~" 'l 

... 
8 
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IJ •l-001 

r•.2 

o( .l, B, c, Dl E, F~, 

.95 -O.I248E-04 -0.4~31E-OS -0.1385~-04 0.1A92F-Ol -O.l~49E-05 -0.68?9E-OS 

, • 75 -0. 6384F-05 -0. 14031=-05 -0. 1 801 l=-D.lt. _ ___!41.bb.2E_:-_Q3_n -a. 2_9134E- 05 -O .3 318E-05 

.55 -0.2766E-05 -0.3014E-06 -O.l369E-04 0.1070E-03 -O.l9llf-05 -O.l327E-05 

~-. 35 - O. A0~6E-06 ::0_. ~245E-07 _-0.25_1_8f.~_Q5 ____ ..0~ 2302E-04 -0 .6432E-06 -0.3531E~Oh 
: .15 -0.6512E-07 -0.4726E-09 0.~4A4E-07 O.l026E-05 -0.9498E-07 -0.2800E-07 

• 95 -0. 75 qsE-05 -0. 2351 f-05 -0 .6820E ~_Q_5_ __ £l....9..8.46F~4 -~-Q..6926E-06 :-.0. 34 7lE:-05 

.75 -0.3808E-05 -0.7169F-06 -0.8Ql3F-05 0.8488E-04 -O.l529F-05 -O.l697E-05 

r•.6 i • 55 -0.1 r:; 70E-05 -0.1530E-06~6BL1E:-_05 __ 0..5lt05E~0__4 -0._9701E-06 -O.b139E:-06 · 

r•t. 

{'.#. 

I .35 -0.4286E-06 -O.l621E-07 -O.l309E-O~ O.ll59E-04 -0.3040E-06 -O.l7~4E-06~ 

.15 -0.3423E-07 -0.2352E-09 0,?6Q3f-08 0.5179E-O~ -0.99A9£-=ll7 -O...l394£::.0.L 

--.95 O.ll64f 06 -0. 5727F-07 0.18A4E-06·-~o.525Tf:-06 ~O.l333F-07 -0.846H:~o7 

.75 0.5726E-07 -0.1756E-07 O.l292E-06 -0.3490E-06 -0.3793F-07 -0.4163E-07 

• 55 o. 2258E-o 1 -o. 3724E- os o.6 413E-o 1 -o~Taa3E-06 -o. ztso·E::.1ff ·:.:a-:-i6-4te-o7 
.35 0.5817f-08 -0.38A6F-09 O.l397E-07 -0.4201E-07 -0.4776E-08 -0.4229F.-08 

--;;-r-s- o.4579E o9 o.56I7e-u o.3487E-oa--=.o.?o5ae-~-mr-~o.4"S46-t:::oa -o.3329E:-o9 

·q' 0.4169F-0' O.l711f-04 0.5127F-04 -O.lff3~-02 O.~HB4E-O~ 0.25fOE-04 

• ?&; o. t389E' -o3 o. 542 7F- 05 o. 657AF-04 -0.9 539E-03 -o:r2rlE:;_·o4· 0. l311E-o4 
.55 0.3990F.-04 O.lll9E-05 0.5137E-04 -0.4862E-03 0.7l61E-05 0.4964E-05 

·-~-,-'5 --~u-. 70tl7J=-os o. tos 6E-=-uo cr~ ITIT7~~~..;.-u.-qa-o-s-r-:1r4-----o;z-o79t:.:.o5 ·· o; lP>ot:-;..0-s--­
• p; o. 4983E-06 0.148 7E- OA 0. ?798E-06 -0.4-:i 76E-05 O.l708E-06 0. 8810F-Q_7 _ ... s 
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fJ" 3.0 

l'~;t .2 

f• .6 

r. t. 

1'.4. 

o< A, B, C 1 Di E t F, 

.qs O.IO?BE-0~ -0.1099£-03 0.2923E-03 -O.l423E-03 -0.4?04E-04 -O.l670E-03 

• 75 0. 41 DOE -04 -0. 243 8 E-04 0. 1143F -o 3 _ _fi._2_99_7£::-_.04 _-0. 5598E-04 -0. 5965E:-:04 

.~5 O.l564E-04 -0.4562E-05 0.3700E-04 0.5410E-04 -o.2q35F-04 -0.203lE-04 

• 35 O. 4289E-.o2_ -0.4546E-06 _ll.JD11E:-04 _ 0 .. 83_74E-05 -0.8964£-05 -0.4955E~5 

• 15 0. 3414E-06 -0. 6423E- 08 O. l 006E-05 -O.l433E-06 -0.7713E-06 -0. 3R06E-06 

f. 95 0.1 316F-03 -a. 1 086E-03 Q.3027E -0.3._~3i)l1E~D3 __ ::--D .. ~222E-::04 -0.1b53E~0.1 .. 

• 15 0.5085E-04 -0.2437E-04 O.l275F.-03 -0.7226E-04 -0.5620E-04 -0.5974E-04 

• 55 O. 184 J F:-!14 -o .4533£~ ___ Q._4531E-04_ .... o .. 3382E-05 -0_. 2919E-04 -0. 2020E-tl4 
I 

:.35 Q.4743E-05 -0.4445E-06 O.l226E-04 -0.32A2F-05 -0.8767E-05 -0.4845E-05 

I .1 5 0. 3721 E-06 -0.625 7F- 08 0. 1 057E-05 ~ .. 6!t.9.J£=illL::.O..il_92.E_~OlL..:::.0..3.7.QB£=0.6_ 

.95 O.l670E-03 -0.1072E-03 0.3TTIE-03H...:0~4803E..:.o3 -0.4243E-04 -O.l635E-03-

.75 0.6234E-04 -0.2433F.-04 O.l405E-03 -O.l794E-03 -0.5635E-04 -0.5976E-04 

• 55 o. zt54t:-o4 - o.45ott:-o5 o. 5361E -o4 -o.6 204E-o4 -o.-·2cicfti:-=-o4 ...:o:zoo7E-o4 
i .35 0.5?35E-05 -0.4345E-06 O.l375E-04 -0.1508E-04 -0.8571E-05 -0.4736E-05 

~,--.; o. 4 o4 s E-o 6 - o. 6o9 2 t=- -otr o. 11 ooE -~.ll6 ztE:..o5"·-.::o.72a6e::...o 6 u -o. 361 oe.::o·6-· 

.95 0.1094E-02 -o.q334E-04 0.3872E-03 -0.3720E-02 -0.4675E-04 -O.l471E-03 

; • 75 o. 241 9F.-o3 -a. 229zt=-o4 o. 2 33tE-o3 -o. 1250E-o2 -o. mrr:-64--=-o:·s·· ....... · 
.55 0.6231E-04 -0.4162E-05 O.ll46E-O~ -0.5507E-03 -0.2711E-04 -O.l869E-04 

~3"5 ___ d_ 0.106 7F-04 -0. 3627F:...n~ - 0~2-z.-qqr-:...u-4H-.;;;:o-;rCJBlt.;;;:lrr--:;;(J.7f63E_;:0!> -0 ~;9~AE.:or 

.15 0 • 74o9E-06 -0.4948f-oq O.l440F-05 -0.5274E-05 -0.599qE-06 -0.2932E-o6 ... 
2 
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fJ. 10. 

I'• .2 

r •. 6 

1'· 1. 

1'= 4. 

o( A, Bs Cs D, E, FL 

.95 0.3832E-03 -0.3ll9E-03 0.9806E-03 -0.9484E-03 -O.l882E-03 -0.5072E-03 

· .15 0. 9947E-04 -0. 4527F-04 0. 250 ?E-!l3.--=-0..l38...1£=.03_.=.0 •.. 1.1.~.7E~.a3. -0 .. 11b.OE:::1l3 ... 

.55 0.3307E-04 -0.7594E-05 
i 
1•35 0.8611E-05 -0.7214E-06 

0.7443E-04 0.4003E-05 -0.4980E-04 -0.3427E-04 

0.19 2 5E -ll4__~0 ... 4_053E ... il5 ... O .... l426E ... 04 -0 •. 71l75E-:0.5_. 

O.I676E-05 -O.l105E-05 -O.l208E-05 -0.5934E-06 1-15 0.6753E-06 -O.lOOlE-07 

I .95 0. 4614E-03 -0.31 50E-O~ O.l009E -0 2 -0 • ..1.2.50E-::.02 . ..::1l._l93B.E~03 .=:0.5139£=-0.3._ 

.75 O.ll53E-03 -0.4634E-04 0.2702E-03 -0.2576E-03 -0.1178E-03 -O.ll89E-03 

~55 O. 3650f- 04 -0.771 01=-05 ___ f)_._ft_4_4_9F::04_::0 .• 55.40E ... Q':t.-:0.5059E-04 -0.3481E-Cl.L 

.• 35 0.8948£-05 -0.7l95E-06 0.2100E-04 -O.l537E-04 -O.l422E-04 -0.7855F-05 

i .15 0.6919E-06 -O.Q943E-08 O.t715F-05 .:::O..J510E:-05 -O.llBaf=:QS__-::!1...58..92£~ 

~-95 O.iJs-oTE-03 -0.3176E-03 O~lOj8E-02 -O.l583E-02 -O.l997E-03 -0.5203E-03 

.75 O.l323E-03 -0.4738E-04 0.2901E-03 -0.3804E-03 -0.1209E-03 -O.l218E-03 

.ss o.4ottE-o4 -o.7823f-oe; o.945sE-o4 -o.tt54E-03 -o~st37E-="<:l4-·.:.o.353-4E-olt 

.35 0.9297E-05 -0.7175f-06 0.2274E-04 -0.2676E-04 -O.l418E-04 -0.7834E-~~ 

-~-~-~ncrrr-o 6 - o. 9874 E-oa o • 1177E -o5· ::.rf.l o4Tt..:.o-s--..:.o. lT7 41: .... -<55--:. o-;5851 E-06 

• 9 5 O.l946E-02 -0.3245E-03 O.l24lf-02 -0.6l70E-02 -0.2581F.-03 -0.5579F-03 

• 7., o. "37J24F-o'3 -o.5"3C1oE-o4 o.4341E-o3 -o.t424E-o2 -o.t42tt-03-.:.o. i4Tli:-o3-
.55 0.7347E-04 -0.8577E-05 O.l688F-03 -0.5827E-03 -0.5669E-04 -0.3892E-04 

:-;3~---nu~TITiiE-::::04 -o. 702 5F06--·o.-,-s'TB"t--04-::-o-.Tr~rr:::.o-~·-::o-~Tf90E-o4 :.o~ 7675-F..:or 

• 15 o.R529E-06 -0.9369E-08 0.2233E-05 -0.5595F-05 -O.lll7E-05 -0.5553E-O' b 
\A) 
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#•-31. 

, •• 2 

,., ·' 

flat. 

r .. "'· 

o( A, B, c, D, E, F, 

,.95 0. 7469E-Ol -0.4999E-03 O.lROOE-02 -0.1 994E-02 -0.4450E-03 -0. 8823E-_03 

i .15 0. 1335F-03 -0. 5457F-04 0. 3 195F-O 3 -0. 2358E-.Q.3_.=.0,..14llE.~0.3 ~o . ._l43~E.==.Q3 ... 
I .55 o.4128E-04 -o.B764E-05 o.a~sE-04 -0.1961~04 -o.~ao9E-04. -o.3985E-04 

.35 O.l050E-04 -0.8190E-06 0.223IE-04 -0.948~05_~~~E~n4_~Q.895QE~05~­

\ .15 Q.8181E-06 -O.l130E-07 O.lBSIE-05 -O.l513E-05 -O.l352E-05 -0.6696E-06' 

i .95 O.BI]IE-03 -0.5114f-03 O.l865F-02 -0.2430E-02-=.0..~!tll7£=.03._-::0.9051f.=.0..3_ 

\.15 0.1514E-03 -0.5634E-04 0.3439E-03 -0.3613E-03 -O.l517E-03 -O.l487E-03 
I 

\ .55 0. 44 77~-04 -0. 8952E-05 O.l004E-03 -0.7917£-:-.a~~0 ..... 59.35E~04_ ~.Q._4-01l.E-::-Jl...lt._ 

I .35 o.1074E-o4 -0.8210E-06 o.2424E-04 -0.2051E-04 -0.1625E-04 -0.8972E-o~ 
.15 Q,8252E-06 -0.1121E-07 O.l952F-05 -O.l954E-05 -0,1349E-05 -0.6681f-06 

• 
.15 

o. too 6 E-o 2 -o. s 2 2 4E- o3 o ;r93 oF -o 2 - o~-zacr4·E~-oz--::o. 47sse :..o 3 :..:o. -92 e6e-o·r­
o.t698E-o3 -0.5809E-04 0.3683E-03 -0.4883E-03 -O.l567E-03 -O.l535E-03 
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